Porcine small intestinal submucosa (SIS) has been recommended as a cell-free, biocompatible biomaterial for the repair of rotator cuff tendon tear. However, we have observed noninfectious edema and severe pain in patients who have undergone SIS implantation for tendon repair. The aim of this study was to conduct an independent assessment of the safety and efficacy of Restore SIS membrane. The Restore orthobiologic implant was examined by histology and the nested PCR technique using porcine immunoreceptor DAP12 gene to examine if SIS membrane contained porcine cells or DNA, respectively. The material was also implanted into mice and rabbits for the evaluation of biological reaction and inflammatory response. Restore SIS was found to contain multiple layers of porcine cells. Chloroacetate esterase staining showed that some of these cells were mast cells. Nested PCR of the DAP12 gene demonstrated that Restore SIS contained porcine DNA material. Subcutaneous implantation of Restore SIS membrane in mice, and in rabbits for rotator cuff tendon repair, showed that the membrane caused an inflammatory reaction characterized by massive lymphocyte infiltration. In conclusion, Restore SIS is not an acellular collagenous matrix, and contains porcine DNA. Our results contradict the current view that Restore SIS is a cell-free biomaterial, and that no inflammatory response is elicited by its implantation. We suggest that further studies should be conducted to evaluate the clinical safety and efficacy of SIS implant biomaterials.
Feeding male Wistar rats a choline-deficient diet containing 0.07% DL-ethionine (CDE diet) for up to 5 weeks results in the production of two distinct non-parenchymal cell populations, oval and duct-like cells. These cells can undergo replication and display different patterns of expression of glutathione S-transferases (GSTs) and pyruvate kinases (PKs). Oval cells were first detected around the periportal region after 1 week of CDE treatment and infiltrated the parenchyma after 2 weeks. Duct-like structures first appeared as isolated ducts in the parenchymal region at 2 weeks and were easily detected after 2.5 weeks. These duct-like structures differed from the bile ducts which reside in the portal region. Large concentrations of duct-like structures in cyst-like clusters were detected after 5 weeks. Enlargement of these structures from single ducts to clusters of up to 20 ducts was observed over 3-5 weeks of CDE treatment. The number of cells forming a duct increased from 5 to 30 cells. We established a double immunocytochemical staining technique to characterize the oval and duct-like cells for their expression of GSTs and PKs. pi GST and M2-PK, which are fetal hepatocytes isoenzymes, are present in virtually all the oval and duct-like cells. Most of the oval cells are devoid of the adult hepatocytes markers, alpha GST, mu GST and L-PK. There are two sub-populations of duct-like cells, one which expresses only fetal markers and the other which co-expresses the adult and fetal isoenzymes. Hence, oval cells display characteristics of fetal hepatocytes and some duct-like cells appear more mature than oval cells. Using a combination of double immunocytochemical and [3H]thymidine labelling techniques we have established that oval cells differentiate into duct-like cells.
Fibrin sealant (FS), a biological adhesive material, has been recently recommended as an adjunct in autologous chondrocyte implantation (ACI). While FS has been shown to possess osteoinductive potential, little is known about its effects on chondrogenic cells. In this study, we assessed the bioactivity of FS (Tisseel ®) on the migration and proliferation of human articular chondrocytes in vitro. Using a co-culture assay to mimic matrix-induced ACI (MACI), chondrocytes were found to migrate from collagen membranes towards FS within 12 h of culture, with significant migratory activity evident by 24 h. In addition, 5-bromo-2'-deoxyuridine (BrdU) incorporation experiments revealed that thrombin, the active component of the tissue glue, stimulated chondrocyte proliferation, with maximal efficacy observed at 48 h poststimulation (1-10 U/ml). In an effort to elucidate the molecular mechanisms underlying these thrombin-induced effects, we examined the expression and activation of protease-activated receptors (PARs), established thrombin receptors. Using a combination of RT-PCR and immunohistochemistry, all four PARs were detected in human chondrocytes, with PAR-1 being the major isoform expressed. Moreover, thrombin and a PAR-1, but not other PAR-isotype-specific peptide agonists, were found to induce rapid intracellular Ca 2+ responses in human chondrocytes in calcium mobilization assays. Together, these data demonstrate that FS supports both the migration and proliferation of human chondrocytes. We propose that these effects are mediated, at least in part, via thrombininduced PAR-1 signalling in human chondrocytes.
This study supports the existence of a pluripotent liver stem cell population which has the potential to differentiate into hepatocytes and bile ductular cells. We compared the expression of hepatocyte-specific and bile ductular-specific markers in fetal and preneoplastic rat liver. L-pyruvate kinase (L-PK) and alpha glutathione S-transferase (GST) were used as adult hepatocyte-specific markers, while cytokeratin 19 (CK19) was used as a bile ductular-specific marker. pi GST and M2-pyruvate kinase (M2-PK), which are fetal hepatocyte-specific and expressed at high levels in the oval and duct-like cells, were also used. We characterized fetal liver derived from 13-21 days of gestation (E13-E21). pi GST was detected in the E18 hepatoblasts, which form the intrahepatic bile ducts, while CK19 was detected at E19. Some of these cells express alpha GST and L-PK from E19 to E21. Oval, duct-like and bile ductular cells in rats treated with a choline-deficient diet containing 0.07% ethionine (CDE diet) for up to 8 weeks were characterized by double immunocytochemistry. L-PK and alpha GST are absent from bile ductular cells in the normal adult liver and up to 3 weeks of CDE treatment. After 4-5 weeks on CDE treatment, the majority of bile ductular cells express L-PK, while at 6 weeks some co-express L-PK and alpha GST. There are two populations of oval cells, a major population expressing only the fetal hepatocyte markers, while a minor population expresses the fetal hepatocyte, adult hepatocyte and bile ductular markers. There are at least three different duct-like cell populations which co-express different markers and have characteristics of fetal hepatocytes at sequential stages of differentiation. One population co-expresses pi GST and M2-PK and is similar to fetal hepatocytes derived from E13-E14 fetuses. The second expresses the two fetal markers and L-PK, and this reflects characteristics of E15 hepatocytes. The third expresses pi GST, M2-PK, L-PK and alpha GST which is characteristic of E16-E19 hepatocytes. Upon withdrawal of the CDE diet, autoradiography using tritiated thymidine shows that oval and duct-like cells differentiate into hepatocytes. This study demonstrates that oval and duct-like cells express both hepatocytic and bile ductular markers, and have the capacity to differentiate into hepatocytes, characteristics similar to hepatoblasts in the developing rat liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.