A stretchable organic digital information storage device has been developed, which potentially advances the development of future smart and digital stretchable electronic systems. The stretchable organic memory with a buckled structure was configured by a mechanically flexible and elastic graphene bottom electrode and polymer compound. The current-voltage curve of the wrinkled memory device demonstrated electrical bistability with typical write-once-read-many times memory features and a high ON/OFF current ratio (B10 5 ). Even under repetitive stretching, the stretchable organic memory exhibited excellent electrical switching functions and memory effects. We believe the first proof-of-concept presentation of the stretchable organic nonvolatile memory may accelerate the development of information storage device in various stretchable electronic applications, such as stretchable display, wearable computer and artificial skin.
Sorting of semiconducting single-walled carbon nanotubes (SWNTs) by conjugated polymers has attracted considerable attention recently because of its simplicity, high selectivity, and high yield. However, up to now, all the conjugated polymers used for SWNT sorting are electron-donating (p-type). Here, a high-mobility electron-accepting (n-type) polymer poly([N,N′-bis(2octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′bithiophene)) (P(NDI2OD-T2)) is utilized for the sorting of high-purity semiconducting SWNTs, as characterized by Raman spectroscopy, dielectric force spectroscopy and transistor measurements. In addition, the SWNTs sorted by P(NDI2OD-T2) have larger diameters than poly(3-dodecylthiophene) (P3DDT)-sorted SWNTs. Molecular dynamics simulations in explicit toluene demonstrate distinct linear or helical wrapping geometry between P(NDI2OD-T2) and different types of SWNTs, likely as a result of the strong interactions between the large aromatic core of the P(NDI2OD-T2) backbone and the hexagon path of SWNTs. By using high-mobility n-type P(NDI2OD-T2) as the sorting polymer, ambipolar SWNT transistors with better electron transport than that attained by P3DDT-sorted SWNTs are achieved. As a result, fl exible negated AND and negated OR logic circuits from the same set of ambipolar transistors are fabricated, without the need for doping. The use of n-type polymers for sorting semiconducting SWNTs and achieving ambipolar SWNT transistor characteristics greatly simplifi es the fabrication of fl exible complementary metal-oxide-semiconductor-like SWNT logic circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.