Reinforced concrete structures in the marine environment face serious corrosion risks. Coating protection and adding corrosion inhibitors are the most economical and effective methods. In this study, a nano-composite anti-corrosion filler with a mass ratio of CeO2:GO = 4:1 was prepared by hydrothermally growing cerium oxide on the surface of graphene oxide. The filler was mixed with pure epoxy resin at a mass fraction of 0.5% to prepare a nano-composite epoxy coating. The basic properties of the prepared coating were evaluated from the aspects of surface hardness, adhesion grade, and anti-corrosion performance on Q235 low carbon steel subjected to simulated seawater and simulated concrete pore solutions. Results showed that after 90 days of service, the corrosion current density of the nanocomposite coating mixed with corrosion inhibitor was the lowest (Icorr = 1.001 × 10−9 A/cm2), and the protection efficiency was up to 99.92%. This study provides a theoretical foundation for solving the corrosion problem of Q235 low carbon steel in the marine environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.