The Deep neural networks (DNNs) have achieved great success on a variety of computer vision tasks, however, they are highly vulnerable to adversarial attacks. To address this problem, we propose to improve the local smoothness of the representation space, by integrating a margin-based triplet embedding regularization term into the classification objective, so that the obtained model learns to resist adversarial examples. The regularization term consists of two steps optimizations which find potential perturbations and punish them by a large margin in an iterative way. Experimental results on MNIST, CASIA-WebFace, VGGFace2 and MS-Celeb-1M reveal that our approach increases the robustness of the network against both feature and label adversarial attacks in simple object classification and deep face recognition.The code is available at https://github.com/ zhongyy/Adversarial_MTER
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.