Bacterial cellulose (BC) production was realized in a batch cultivation of Acetobacter xylinum subsp. sucrofermentans BPR2001 in a 50-L internal-loop airlift reactor. When the bacterium was cultivated with air supply, 3.8 g/L of BC was produced after 67 hours. When oxygen-enriched gas was supplied, the concentration of BC was doubled and the production rate of BC was 0.116 g/L. h, which was two times higher than that of air-supplied culture and comparable to that in a mechanically agitated stirred-tank fermentor. Bacterial cellulose produced by the airlift reactor formed a unique ellipse pellet (BC pellet), different from the fibrous form which was produced in an agitated stirred-tank fermentor. The BC-pellet suspension was demonstrated to have a higher volumetric oxygen transfer coefficient than the fibrous BC suspension in a 50-L internal-loop airlift reactor. The mixing time of BC-pellet suspension in the airlift reactor was also shorter than that in water.
Bacterial cellulose (BC) production by Acetobacter xylinum subsp. sucrofermentans BPR2001 was carried out in a 50-1 internal-loop airlift reactor in air at an initial fructose concentration of 40 g/l. The BC production rate was 0.059 g/l per h. When oxygen-enriched air was supplied instead of air, the BC production rate increased to 0.093 g/l per h, and the BC yield was enhanced from 11% in air to 18%. When the initial fructose concentrations were varied from 30 to 70 g/l, the highest BC yield (35%) the highest production rate (0.22 g/l x per h), and the highest concentration of BC produced (10.4 g/l) were observed at 60-70 g/l fructose. From the carbon mass balance calculated at the final stage of cultivation, it was observed that enhanced BC production was reflected as a decrease in both CO2 evolution and the concentration of other unknown substances, suggesting the efficient utilization of energy for BC synthesis despite O2 limitation.
Bacterial cellulose (BC) production was carried out in a batch cultivation of Acetobacter xylinum in a 50-L internal loop airlift reactor by addition of water-soluble polysaccharides into the medium. When 0.1% (w/w) agar was added, BC production reached 8.7 g/L compared with 6.3 g/L in the control, and duration of the cultivation period to reach the maximum concentration of BC was almost half of that without addition of polysaccharides. During cultivation, BC was formed into pellets whose size was smaller when the productivity of BC was higher, indicating that increase in the relative viscosity by addition of polysaccharides hindered formation of large clumps of BC and increase in the volumetric oxygen transfer coefficient at high flow rate led to increase in BC productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.