Intervertebral disc degeneration (IVDD) is the main cause of modern low back pain, leading to high societal economic costs. To find an effective medical treatment for this disease, oxymatrine liposomes (OMT-LIP) were prepared with the pH-gradient method. Materials and Methods: Nucleus pulposus (NP) cells from Sprague-Dawley rats were used for the cell experiments. Kunming mice were used for in vivo imaging. LIP were employed to deliver OMT, and the particle size, ζ-potential, morphology, in vitro stability and in vitro release characteristics were evaluated. The OMT-LIP targeting effect was measured by in vivo imaging. Cell Counting Kit-8 assays were used to detect the cytotoxicity of OMT and OMT-LIP on NP cells. Therapeutic efficacy was measured by Western blot, real-time quantitative polymerase chain reaction, and apoptosis assays. Radiologic analysis was performed to evaluate the therapeutic effects in vivo. Results: Orthogonal test results revealed that the mass ratio of egg yolk phosphatidylcholine to cholesterol was the key factor to effectively trap OMT in LIP. Optimal OMT-LIP showed multivesicular structure with entrapment efficiency of 73.4 ± 4.1%, particle size of 178.1 ± 2.9 nm, and ζ-potential of -13.30 ± 2.34 mV. OMT-LIP manifested excellent stability in vitro and presented significantly longer sustained release compared to OMT solution in phosphatebuffered saline (pH 7.4). OMT-LIP conspicuously increased OMT accumulation in the degenerative disc, attenuated NP cell apoptosis, reduced the expression of matrix metalloproteinases 3/9 and interleukin-6, and decreased degradation of type II collagen. In in vivo study, X-ray demonstrated that OMT-LIP inhibited IVDD. Conclusion: OMT-LIP may be a useful treatment to alleviate disc inflammation and IVDD.
Intervertebral disc degeneration is the main cause of low back pain. However, its pathomechanism has not been fully clarified yet. Previous studies have indicated that inflammation may lead to apoptosis of nucleus pulposus cells and break the balance between anabolism and catabolism of the nucleus pulposus extracellular matrix. The purpose of this study is to explore the mitigative effect of oxymatrine on extracellular matrix degradation and apoptosis of nucleus pulposus cells after interleukin-1 beta-induced inflammation, and its possible signaling pathway. We examined the gene and protein levels of collagen II, aggrecan, and MMPs (MMP2/3/9/13) and interleukin 6 in nucleus pulposus cells. The results demonstrated that oxymatrine could reduce extracellular matrix degradation and apoptosis of nucleus pulposus cells; interleukin-1 beta prompted the expression of MMPs and interleukin 6 through TLR4/NF-κB axis, while oxymatrine reduced the expression of MMPs and TNF-α induced by interleukin-1 beta. Moreover, TAK 242, as a small molecule inhibitor of TLR4 signaling, was used to detect the effect of oxymatrine on the TLR4/NF-κB signaling. The final experimental results show that oxymatrine could reduce the inflammatory response of nucleus pulposus cells and degradation of nucleus pulposus tissue. Oxymatrine may be a potential medicine to reduce disc inflammation and relieve intervertebral disc degeneration by inhibiting the TLR4/NF-κB signal pathway. Impact statement Currently, drug therapy is a potential treatment for patients with intervertebral disc degeneration. In the present research, oxymatrine intervenes in intervertebral disc degeneration effectively via regulating inflammation in intervertebral disc degeneration rats. Our research highlights the therapeutic potential of oxymatrine in the treatment of intervertebral disc degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.