The steady-state kinetics and mechanism of the hydrolysis and aminolysis of a series of acyclic depsipeptides, catalyzed by the class C beta-lactamase of Enterobacter cloacae P99, have been studied in order to more firmly establish the nature of the transition states involved. The class C beta-lactamase of Enterobacter cloacae P99 was employed. The depsipeptide substrates contained a constant acyl group, (phenylacetyl)glycyl, and chemically different leaving groups, m-carboxyphenoxide, m-carboxythiophenoxide, 3-carboxyl-4-nitrophenoxide, lactate, and thiolactate. Evaluation of the steady-state kinetic parameters and the effect of the alternative nucleophile methanol on these parameters and on the product distribution showed that deacylation was largely rate-determining to turnover of the aryl esters under conditions of substrate saturation, while acylation was rate-determining to the alkyl esters. The earlier conclusion [Govardhan & Pratt (1987) Biochemistry 26, 3385-3395] that acylation largely limited the turnover of the aryl esters was shown to be an artifact of phosphate buffer inhibition. The aminolysis of both the aryl the alkyl esters by D-phenylalanine was influenced by binding of the substrate at a second binding site on the acyl-enzyme intermediate. A study of inhibiton of the hydrolysis of (phenylacetyl)-glycyl-D-thiolactate by the aminolysis product (phenylacetyl)glycyl-D-phenylalanine indicated that the second binding site is also available for ligands to bind the free enzyme and to the noncovalent Michaelis complex with this substrate. It is likely that penicillin-recognizing enzymes in general, both beta-lactamases and DD-peptidases, possess an extended substrate-binding site into which a variety of small ligands may bind at any point along the reaction coordinate and, to a greater or lesser extent depending on circumstances, affect catalysis.
The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY1112, the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12.
PTPN12 is an important tumor suppressor that plays critical roles in various physiological processes. However, the molecular basis underlying the substrate specificity of PTPN12 remains uncertain. Here, enzymological and crystallographic studies have enabled us to identify two distinct structural features that are crucial determinants of PTPN12 substrate specificity: the pY+1 site binding pocket and specific basic charged residues along its surface loops. Key structurally plastic regions and specific residues in PTPN12 enabled recognition of different HER2 phosphorylation sites and regulated specific PTPN12 functions. In addition, the structure of PTPN12 revealed a CDK2 phosphorylation site in a specific PTPN12 loop. Taken together, our results not only provide the working mechanisms of PTPN12 for desphosphorylation of its substrates but will also help in designing specific inhibitors of PTPN12.
Epithelial-mesenchymal transition (EMT) plays a fundamental role in cancer metastasis. The ubiquitin ligase FBXW7, a general tumor suppressor in human cancer, has been implicated in diverse cellular processes, however, its role in cholangiocarcinoma (CCA) metastasis has not been identified. Here, we report a crucial role of FBXW7 in CCA metastasis by regulating EMT. Loss of FBXW7 expression was detected in CCA cells and clinical specimens. Clinicopathological analysis revealed a close correlation between FBXW7 deficiency and metastasis, TNM stage and differentiation in intrahepatic CCA and perihilar CCA. Moreover, FBXW7 silencing in CCA cells dramatically promoted EMT, stem-like capacity and metastasis both in vitro and in vivo. Conversely, FBXW7 overexpression attenuated these processes. Mechanistically, treatment with rapamycin, a mTOR inhibitor, inhibited EMT, stem-like capacity and metastasis induced by FBXW7 silencing both in vitro and in vivo. Furthermore, the expression of EMT regulating transcription factors, snail, slug and ZEB1, were also decreased markedly with rapamycin treatment. In addition, silencing ZEB1 inhibited EMT and metastasis of both CCA cells and FBXW7 deficient CCA cells, which implicated the potential role of ZEB1 in FBXW7/mTOR signaling pathway related CCA metastasis. In conclusion, our findings defined a pivotal function of FBXW7 in CCA metastasis by regulating EMT.
Beta-Secondary and solvent deuterium kinetic isotope effects have been determined for the steady-state kinetic parameters V/K and V for turnover of a depsipeptide substrate, m-[[(phenylacetyl)glycyl]-oxy]benzoic acid, and of a beta-lactam substrate, penicillanic acid, by three typical class A beta-lactamases and a class C beta-lactamase. The isotope effects on alkaline hydrolysis of these substrates have been used as a frame of reference. The effect of the transition state conformation of the substrates in determining the beta-secondary isotope effects has been explicitly considered. The inverse beta-secondary isotope effects on both V/K and V for the class A enzymes with both substrates indicate transition states where the carbonyl group of the scissile bond has become tetrahedral and therefore reflect typical acyl-transfer transition states. The solvent isotope effects indicate that enzyme deacylation (as reflected in V for the Staphylococcus aureus PC1 beta-lactamase) may be a classical general-base-catalyzed hydrolysis but that there is little proton motion in the enzyme acylation transition state (as revealed by V/K) for the TEM beta-lactamase and Bacillus cereus beta-lactamase I. These results provide kinetic support for the conjecture made on structural grounds that class A beta-lactamases employ an asymmetric double-displacement mechanism. The isotope effects on V/K for the class C beta-lactamase of Enterobacter cloacae P99 suggest an acyl-transfer transition state for the penicillin, although, as for the class A enzymes, without significant proton motion. On the other hand, the V/K transition state for depsipeptide does not seem to involve covalent chemistry. Suggestive of this conclusion are the measured beta-secondary isotope effect of 1,002 +/- 0.012 and the inverse solvent isotope effect. These results provide an example of a significant difference between the kinetics of turnover of a beta-lactam and a depsipeptide by a beta-lactamase. The V transition state for both substrates with the P99 beta-lactamase probably involves acyl-transfer (deacylation) where the conformation of the acyl-enzyme is closely restricted. The conformations of acyl-enzymes of the PC1 and P99 beta-lactamases correlate to the (different) dispositions of general base catalysts at their active sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.