We have developed a new method for simultaneous denoising and reconstruction of 5-D seismic data corrupted by random noise and missing traces. Several algorithms have been proposed for seismic data restoration based on rank-reduction methods. More recently, a damping operator has been introduced into the conventional truncated singular value decomposition (TSVD) formula to further remove residual noise, the presence of which disturbs the quality of the seismic results. Despite the success of the damped rank-reduction (DRR) method when the observed data have an extremely low signal-to-noise ratio (SNR), random noise is still a limiting factor for obtaining perfect quality of the result. Therefore, how to accurately solve the simultaneous denoising and reconstruction problem with high fidelity is still challenging. We assume that introducing only the damping operator into the TSVD formula is not enough to remove the random noise and restore the useful signal well. Here, by combining the soft thresholding operator and the moving-average filter, we first develop a new operator, which we call soft thresholding moving-average (STMA) operator. Then, by introducing the STMA operator into the DRR framework, we develop a new algorithm known as the robust damped rank-reduction (RDRR) method, which aims at mixing the advantages of the STMA operator and the damping operator. The STMA operator is applied to the Hankel matrix after damped truncated singular value decomposition (DTSVD) to better remove the residual noise. Examples of the proposed approach on synthetic and field 5-D seismic data demonstrate the better performance in terms of the visual examination and numerical test compared with the DRR approach. The proposed method aims at producing an effective low-rank filter and, thus, can perfectly enhance the SNR of the simultaneously denoised and reconstructed results with higher accuracy.
Noise and missing traces usually influence the quality of multidimensional seismic data. It is, therefore, necessary to e stimate the useful signal from its noisy observation. The damped rank-reduction (DRR) method has emerged as an effective method to reconstruct the useful signal matrix from its noisy observation. However, the higher the noise level and the ratio of missing traces, the weaker the DRR operator becomes. Consequently, the estimated low-rank signal matrix includes a unignorable amount of residual noise that influences the next processing steps. This paper focuses on the problem of estimating a low-rank signal matrix from its noisy observation. To elaborate on the novel algorithm, we formulate an improved proximity function by mixing the moving-average filter and the arctangent penalty function. We first apply the proximity function to the level-4 block Hankel matrix before the singular value decomposition (SVD), and then, to singular values, during the damped truncated SVD process. The relationship between the novel proximity function and the DRR framework leads to an optimization problem, which results in better recovery performance. The proposed algorithm aims at producing an enhanced rank-reduction operator to estimate the useful signal matrix with a higher quality. Experiments are conducted on synthetic and real 5-D seismic data to compare the effectiveness of our approach to the DRR approach. The proposed approach is shown to obtain better performance since the estimated low-rank signal matrix is cleaner and contains less amount of artifacts compared to the DRR algorithm.
Local slope is an important attribute that can help distinguish seismic signals from noise. Based on optimal slope estimation, many filtering methods can be designed to enhance the signal-to-noise ratio (S/N) of noisy seismic data. We present an open-source Matlab code package for local slope estimation and corresponding structural filtering. This package includes 2D and 3D examples with two main executable scripts and related sub-functions. All code files are in the Matlab format. In each main script, local slope is estimated based on the well-known plane wave destruction algorithm. Then, the seismic data are transformed to the flattened domain by utilizing this slope information. Further, the smoothing operator can be effectively applied in the flattened domain. We introduce the theory and mathematics related to these programs, and present the synthetic and field data examples to show the usefulness of this open-source package. The results of both local slope estimation and structural filtering demonstrate that this package can be conveniently and effectively applied to the seismic signal analysis and denoising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.