Cyanobacteria have evolved effective adaptive mechanisms to improve photosynthesis and CO 2 fixation. The central CO 2 -fixing machinery is the carboxysome, which is composed of an icosahedral proteinaceous shell encapsulating the key carbon fixation enzyme, Rubisco, in the interior. Controlled biosynthesis and ordered organization of carboxysomes are vital to the CO 2 -fixing activity of cyanobacterial cells. However, little is known about how carboxysome biosynthesis and spatial positioning are physiologically regulated to adjust to dynamic changes in the environment. Here, we used fluorescence tagging and live-cell confocal fluorescence imaging to explore the biosynthesis and subcellular localization of b-carboxysomes within a model cyanobacterium, Synechococcus elongatus PCC7942, in response to light variation. We demonstrated that b-carboxysome biosynthesis is accelerated in response to increasing light intensity, thereby enhancing the carbon fixation activity of the cell. Inhibition of photosynthetic electron flow impairs the accumulation of carboxysomes, indicating a close coordination between b-carboxysome biogenesis and photosynthetic electron transport. Likewise, the spatial organization of carboxysomes in the cell correlates with the redox state of photosynthetic electron transport chain. This study provides essential knowledge for us to modulate the b-carboxysome biosynthesis and function in cyanobacteria. In translational terms, the knowledge is instrumental for design and synthetic engineering of functional carboxysomes into higher plants to improve photosynthesis performance and CO 2 fixation.
The carboxysome is a complex, proteinaceous organelle that plays essential roles in carbon assimilation in cyanobacteria and chemoautotrophs. It comprises hundreds of protein homologs that self-assemble in space to form an icosahedral structure. Despite its significance in enhancing CO 2 fixation and potentials in bioengineering applications, the formation of carboxysomes and their structural composition, stoichiometry, and adaptation to cope with environmental changes remain unclear. Here we use live-cell single-molecule fluorescence microscopy, coupled with confocal and electron microscopy, to decipher the absolute protein stoichiometry and organizational variability of single b-carboxysomes in the model cyanobacterium Synechococcus elongatus PCC7942. We determine the physiological abundance of individual building blocks within the icosahedral carboxysome. We further find that the protein stoichiometry, diameter, localization, and mobility patterns of carboxysomes in cells depend sensitively on the microenvironmental levels of CO 2 and light intensity during cell growth, revealing cellular strategies of dynamic regulation. These findings, also applicable to other bacterial microcompartments and macromolecular self-assembling systems, advance our knowledge of the principles that mediate carboxysome formation and structural modulation. It will empower rational design and construction of entire functional metabolic factories in heterologous organisms, for example crop plants, to boost photosynthesis and agricultural productivity.
Rubisco is the essential enzyme mediating the fixation of atmospheric CO 2 during photosynthesis. In cyanobacteria, Rubisco enzymes are densely packed and encapsulated in a specialized organelle known as the carboxysome. Well-defined Rubisco assembly and carboxysome formation are pivotal for efficient CO 2 fixation. Numerous chaperone proteins, including RbcX, are essential for proper protein folding and Rubisco assembly. In this study, we investigated the in vivo function of RbcX in the cyanobacterium Synechococcus elongatus PCC 7942 (Syn7942) using molecular, biochemical, and live-cell fluorescence imaging approaches. Our results show that genetic deletion of the rbcX gene affects Rubisco abundance, as well as carboxysome formation and spatial distribution. Moreover, RbcX appears as one component of the carboxysome and shows a dynamic interaction with Rubisco enzymes. These in vivo observations provide insight into the role of RbcX from Syn7942 in mediating carboxysome assembly. Understanding the molecular mechanism underlying Rubisco assembly and carboxysome biogenesis will provide essential information required for engineering functional CO 2fixing complexes in heterogeneous organisms, especially plants, with the aim of boosting photosynthesis and agricultural productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.