Hand, foot, and mouth disease (HFMD) is a worldwide infectious disease, prominent in China. China’s HFMD data are sparse with a large number of observed zeros across locations and over time. However, no previous studies have considered such a zero-inflated problem on HFMD’s spatiotemporal risk analysis and mapping, not to mention for the entire Mainland China at county level. Monthly county-level HFMD cases data combined with related climate and socioeconomic variables were collected. We developed four models, including spatiotemporal Poisson, negative binomial, zero-inflated Poisson (ZIP), and zero-inflated negative binomial (ZINB) models under the Bayesian hierarchical modeling framework to explore disease spatiotemporal patterns. The results showed that the spatiotemporal ZINB model performed best. Both climate and socioeconomic variables were identified as significant risk factors for increasing HFMD incidence. The relative risk (RR) of HFMD at the local scale showed nonlinear temporal trends and was considerably spatially clustered in Mainland China. The first complete county-level spatiotemporal relative risk maps of HFMD were generated by this study. The new findings provide great potential for national county-level HFMD prevention and control, and the improved spatiotemporal zero-inflated model offers new insights for epidemic data with the zero-inflated problem in environmental epidemiology and public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.