Anterior vaginal prolapse (AVP) is the most common form of pelvic organ prolapse (POP) and has deleterious effects on women’s health. Despite recent advances in AVP diagnosis and treatment, a cell atlas of the vaginal wall in AVP has not been constructed. Here, we employ single-cell RNA-seq to construct a transcriptomic atlas of 81,026 individual cells in the vaginal wall from AVP and control samples and identify 11 cell types. We reveal aberrant gene expression in diverse cell types in AVP. Extracellular matrix (ECM) dysregulation and immune reactions involvement are identified in both non-immune and immune cell types. In addition, we find that several transcription factors associated with ECM and immune regulation are activated in AVP. Furthermore, we reveal dysregulated cell–cell communication patterns in AVP. Taken together, this work provides a valuable resource for deciphering the cellular heterogeneity and the molecular mechanisms underlying severe AVP.
Ideal animal models are needed to reflect the changes in the biochemical and biomechanical properties of the vagina that occur in pelvic organ prolapse (POP). In this study, we aimed to demonstrate the short and long-term effect of menopause on the biochemical and biomechanical properties of rat anterior vaginas. Here, Sprague-Dawley rats were bilaterally ovariectomized to induce menopause. Rats without ovariectomy served as the normal control group (n=12). The histology changes and the expression of collagen I, III, and a-SMA were assessed to indicate the biochemical changes in the vagina 2 weeks, 4 weeks, and 16 weeks after ovariectomy (n=6 for 2 and 4 weeks, n=12 for 16 weeks). Uniaxial biomechanical testing was conducted in the control group and ovariectomized rats 16 weeks after ovariectomy. Compared with the control group, the ovariectomy group showed a significant increase in the expression of collagen I 2 weeks after ovariectomy, while collagen III showed a declining trend. Two weeks after ovariectomy, the smooth muscle bundles began to become disorganized, and the fraction of smooth muscle in the nonvascular muscularis of the proximal vagina was significantly decreased (P<0.001). However, there was no difference in the expression of a-SMA in the distal vagina. Compared with the control group, the ovariectomy group had stiffer vaginas with a declining trend in the ultimate load 16 weeks after ovariectomy. In conclusion, surgically induced menopause had a significant short- and long-term impact on tissue composition and biomechanical properties of the rat vagina, which may lead to increased susceptibility to POP development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.