Li5La3Ta2O12:Mn4+ (LLTO:Mn4+) phosphors are prepared in air via high‐temperature solid‐state method and investigated for their crystal structures and luminescence properties. LLTO:Mn4+ phosphor under excitation at 314 nm shows deep‐red emission peaking at 714 nm due to the 2E→4A2 transition of Mn4+ ion. The excitation bands in the range 220 ‐ 570 nm are attributed to the Mn4+ ‐ O2‐ charge‐transfer band and the 4A2g→4T1g, 2T2g, and 4T2g transitions of Mn4+, respectively. The optimal Mn4+ ion concentration is ~0.4 mol%. The concentration quenching mechanism in LLTO:Mn4+ phosphor is electric dipole‐dipole interaction. The luminous mechanism and temperature quenching phenomenon are explained by the Tanabe‐Sugano energy level diagram and the configurational coordinate diagram of Mn4+ in the octahedron, respectively. The experimental results indicate that LLTO:Mn4+ phosphor has a potential application prospect as candidate of deep‐red component in light‐emitting diode (LED) lighting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.