Facioscapulohumeral dystrophy (FSHD) is one of the three most common muscular dystrophies in the Western world, however, its etiology remains only partially understood. Here, we provide evidence of constitutive DNA damage in in vitro cultured myoblasts isolated from FSHD patients and demonstrate oxidative DNA damage implication in the differentiation of these cells into phenotypically-aberrant myotubes. Double homeobox 4 (DUX4), the major actor in FSHD pathology induced DNA damage accumulation when overexpressed in normal human myoblasts, and RNAi-mediated DUX4 inhibition reduced the level of DNA damage in FSHD myoblasts. Addition of tempol, a powerful antioxidant, to the culture medium of proliferating DUX4-transfected myoblasts and FSHD myoblasts reduced the level of DNA damage, suggesting that DNA alterations are mainly due to oxidative stress. Antioxidant treatment during the myogenic differentiation of FSHD myoblasts significantly reduced morphological defects in myotube formation. We propose that the induction of DNA damage is a novel function of the DUX4 protein affecting myogenic differentiation of FSHD myoblasts.
With combined antiretroviral therapy (cART), the risk for HIV-infected individuals to develop a non-Hodgkin lymphoma is diminished. However, the incidence of Burkitt lymphoma (BL) remains strikingly elevated. Most BL present a t(8;14) chromosomal translocation which must take place at a time of spatial proximity between the translocation partners. The two partner genes, MYC and IGH, were found colocalized only very rarely in the nuclei of normal peripheral blood B-cells examined using 3D-FISH while circulating B-cells from HIV-infected individuals whose exhibited consistently elevated levels of MYC-IGH colocalization. In vitro, incubating normal B-cells from healthy donors with a transcriptionally active form of the HIV-encoded Tat protein rapidly activated transcription of the nuclease-encoding RAG1 gene. This created DNA damage, including in the MYC gene locus which then moved towards the center of the nucleus where it sustainably colocalized with IGH up to 10-fold more frequently than in controls. In vivo, this could be sufficient to account for the elevated risk of BL-specific chromosomal translocations which would occur following DNA double strand breaks triggered by AID in secondary lymph nodes at the final stage of immunoglobulin gene maturation. New therapeutic attitudes can be envisioned to prevent BL in this high risk group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.