The cornea is a curved and transparent structure that provides the initial focusing of a light image into the eye. It consists of a central stroma that constitutes 90% of the corneal depth, covered anteriorly with epithelium and posteriorly with endothelium. Its transparency is the result of the regular spacing of collagen fibers with remarkably uniform diameter and interfibrillar space. Corneal collagen is composed of heterotypic fibrils consisting of type I and type V collagen molecules. The cornea also contains unusually high amounts of type VI collagen, which form microfibrillar structures, FACIT collagens (XII and XIV), and other nonfibrillar collagens (XIII and XVIII). FACIT collagens and other molecules, such as leucine-rich repeat proteoglycans, play important roles in modifying the structure and function of collagen fibrils. Proteoglycans are macromolecules composed of a protein core with covalently linked glycosaminoglycan side chains. Four leucine-rich repeat proteoglycans are present in the extracellular matrix of corneal stroma: decorin, lumican, mimecan and keratocan. The first is a dermatan sulfate proteoglycan, and the other three are keratan sulfate proteoglycans. Experimental evidence indicates that the keratan sulfate proteoglycans are involved in the regulation of collagen fibril diameter, and dermatan sulfate proteoglycan participates in the control of interfibrillar spacing and in the lamellar adhesion properties of corneal collagens. Heparan sulfate proteoglycans are minor components of the cornea, and are synthesized mainly by epithelial cells. The effect of injuries on proteoglycan synthesis is discussed.
There is evidence suggesting that glycosaminoglycans (GAG) are potent inhibitors of growth and aggregation of calcium oxalate crystals in vitro. This finding raises the possibility that the urinary GAG could play an inhibitory role in the urolithiasis. To investigate this hypothesis, a study on the urinary excretion of GAG in normal and stone forming adults and children was undertaken. Different methods were compared, and the best results were obtained when the GAG were measured by densitometry after agarose gel electrophoresis. Although the GAG concentration was increased in the morning urine compared to the 24-hour urine samples, and in males compared to females, the GAG/creatinine ratio was independent of period of urine collection and of sex. So, it was advantageous to express the amounts of urinary GAG as mg/g of creatinine. Children excreted more GAG than adults, with a higher proportion of chondroitin sulfate. We have shown that the stone forming subjects, both adults and children, excreted lower levels of urinary GAG as compared to normal subjects, independently of the metabolic disorder. The proportions between chondroitin sulfate and heparan sulfate and the structures of these GAG were unaltered in the stone formers. These results indicate that there is a definite difference in terms of levels of GAG between normal and stone forming urines, and suggest a correlation between the urinary GAG concentration and urolithiasis.
Diabetes mellitus was induced in one group of rats by a single injection of streptozotocin. The glycemia, the body weight, and the blood systolic pressure were measured every week, and the 24 h urine volume and urinary excretions of creatinine, albumin and glycosaminoglycans were measured every 2 weeks. At the end of the experiment (12 weeks) the weight and the glycosaminoglycan composition of the kidneys were determined. All the diabetic animals were hyperglycemic, hypertense, and did not gain weight during all the experimental period. Albuminuria appeared from the second week on. Rat urine was shown to contain heparan sulfate, chondroitin sulfate, and dermatan sulfate, and the glycosaminoglycan excretion decreased in all diabetic animals. The onset of the change in glyco-samino-glycan excretion rate was a very early event, appearing in the second week after diabetes induction. The main glycosaminoglycan found in normal rat kidney was heparan sulfate and, in contrast to the urine, the total kidney glycosaminoglycans increased in diabetic kidney, due to chondroitin sulfate and dermatan sulfate accumulation. The heparan sulfate concentration (per tissue dry weight) did not change. Our results suggest that quantification of urinary glycosaminoglycans may be a useful tool for the early diagnosis of diabetic nephropathy.
A chondroitinase that degrades only chondroitin sulphate B was isolated from Flavobacterium heparinum, and separated from a constitutive chondroitinase AC also present in extracts of F. heparinum. The enzyme acts only on chondroitin sulphate B, producing oligo- and tetra-saccharides, plus an unsaturated 4-sulphated disaccharide (deltaDi-4S). The oligosaccharide fraction (mol. wt. 3000) is susceptible to chondroitinase AC, producing mainly deltaDi-4S. The chondroitinase B is distinguished from chondroitinase AC by several properties, such as the effect of certain metal ions, temperature for optimal activity, and susceptibility to increasing salt concentrations. The enzyme is induced in F. heparinum by all the chondroitin sulphates, as well as by the disaccharides prepared from the chondroitins. The mechanism of induction of the enzyme and the structure of chondroitin sulphate B are discussed in relation to these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.