Abstract. Poor fertility of breeding stallions is a recognised problem in the equine industry. The aim of the present study was to detect molecular pathways using two groups of stallions that differed in pregnancy rates as well as in the proportion of normal and motile spermatozoa. RNA was isolated from spermatozoa of each stallion and microarray data were analysed to obtain a list of genes for which transcript abundance differed between the groups (P #0.05, fold change $1.2). In all, there were 437 differentially expressed (DE) genes between the two groups (P # 0.05, fold change $1.2). Next, the DE genes were analysed using Database for Annotation, Visualisation, and Integrated Discovery (DAVID). Finally, ingenuity pathways analysis (IPA) was used to identify top biological functions and significant canonical pathways associated with the DE genes. Analysis using the DAVID database showed significant enrichment in the gene ontology (GO) term 'RNA binding' (P ¼ 0.05) and in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway cytokinecytokine receptor interaction (P ¼ 0.02). Furthermore, IPA analysis showed interconnected biological functions and canonical pathways involved in the regulation of spermatogenesis and male fertility. In addition, significantly enriched metabolic pathways were identified. In conclusion, the present study has identified, for the first time, molecular processes in stallion spermatozoa that could be associated with stallion fertility.
Abstract. Horses are seasonal breeders with a natural breeding season beginning in spring and extending through midsummer. In this study, quantitative and qualitative parameters of chilled stallion semen were compared between fertile and subfertile stallions and between the breeding and the non-breeding season. Semen quality parameters compared included ejaculate volume, sperm concentration, total sperm number, sperm morphology, and computer-assisted semen analysis (CASA)-derived sperm movement characteristics obtained from two groups of warmblood stallions (n=8; four fertile stallions and four subfertile stallions), which differ in the seasonal pregnancy rate 80 %–90 % (fertile) vs. 40 %–60 % (subfertile). A total of 64 ejaculates were collected from the stallions (n=8; four in the breeding season and four in the non-breeding season of each stallion). No significant differences in the semen quality parameters between the fertile and the subfertile stallions in the non-breeding season were observed. However, in the breeding season the proportion of morphologically normal sperm, total motility, progressive motility, average path velocity (VAP), and curvilinear velocity (VCL) were significantly higher in the fertile group (P<0.05) when compared with the subfertile group. In addition, a significant seasonal variation in the proportion of morphological normal sperm was found in the fertile group between the breeding and the non-breeding season (P<0.05). Moreover, significant seasonal variations (P<0.05) in CASA parameters of mean VAP, straight line velocity (VSL), and beat-cross frequency (BCF) were observed in the fertile and the subfertile stallions, which tended to be lower in the non-breeding season. In conclusion, differences between the fertile and the subfertile stallions were observed only in the breeding season, and a few of CASA-derived parameters seemed to be significantly lower during the non-breeding season in both the fertile and the subfertile stallions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.