The mechanical properties of polypropylene-bentonite nanocomposites were studied in this work. In this study, stearic acid was used as both a new surface modifier of the nano bentonite and a new interface modifier during the compounding of the nanocomposites with a twin-screw extruder. Three different weight concentrations (1.5 wt.%, 2.5 wt.%, and 5.0 wt.%.) were chosen for each type of nanobentonite compounds. Fourier transform infrared spectroscopy allowed us the possibility to discard any chemical interaction between the nanobentonite and stearic acid. Nevertheless, the physical interactions between both components favored the mechanical properties, resulting in around 150% improvement in the elongation of the nanocomposites containing stearic acid as surface and interface modifier. This can be due to the good intercalation of the nanobentonite platelets as found by wide angle X-ray diffraction and this was further confirmed by scanning electron microscopy, where the fracture surface analyses of these nanocomposites showed the best dispersion and wetting of the nanoplatelets by the polymer matrix. Crystallization behavior was also modified by stearic acid incorporation and the nanocomposites with better dispersion exhibited crystallization temperatures similar to pure polypropylene.
The toughness and the rheology of polypropylene (PP)‐calcium carbonate (CaCO3) nanocompounds using stearic acid as an interface modifier were studied in this work. Compounding of the nanocomposites was carried out with a twin‐screw extruder. The benchmark samples (untreated) and stearic acid‐treated CaCO3 nanoparticles were characterized by Fourier transform infrared (FTIR) spectroscopy. The nanocompounds were characterized by impact test, tensile test, scanning electron microscopy (SEM), rheological analysis, and differential scanning calorimetry (DSC). The elongation‐at‐break and impact resistance were increased in nanocompounds with interface modifier (stearic acid in hopper of the extruder). Nanocompounds with stearic acid showed the best dispersion state. Stearic acid helps to reduce complex viscosity acting as a lubricant, reducing frictional forces between nanoparticles of calcium carbonate (NCC) and PP chains. Nanocompounds with better dispersion state had crystallization temperatures very similar to the PP homopolymer. POLYM. ENG. SCI., 59:E279–E285, 2019. © 2019 Society of Plastics Engineers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.