Recurrent honey bee losses make it critical to understand the impact of human interventions, such as antibiotics use in apiculture. Antibiotics are used to prevent or treat bacterial infections in colonies. However, little is known about their effects on honey bee development. We studied the effect of two commercial beekeeping antibiotics on the bee physiology and behavior throughout development. Our results show that antibiotic treatments have an effect on amount of lipids and rate of behavioral development. Lipid amount in treated bees was higher than those not treated. Also, the timing of antibiotic treatment had distinct effects for the age of onset of behaviors starting with cleaning, then nursing and lastly foraging. Bees treated during larva-pupa stages demonstrated an accelerated behavioral development and loss of lipids, while bees treated from larva to adulthood had a delay in behavioral development and loss of lipids. The effects were shared across the two antibiotics tested, TerramycinR (oxytetracycline) and TylanR (tylosin tartrate). These results on effects of antibiotic treatments suggest a role of microbiota in the interaction between the fat body and brain that is important for honey bee behavioral development.
Many species of social Hymenoptera demonstrate behavioral flexibility, where older workers that typically forage can revert to younger worker tasks, such as nursing, when these are absent. This flexibility is typical of the sterile worker class, yet rare in queens. In the little fire ant (Wasmannia auropunctata), queens have been reported to perform only egg laying. We examined behavior of queens of W. auropunctata after demographic manipulation. When half of the workers were removed from the colony, queens were observed caring for eggs, larvae and pupae as well as eating outside of the nest, like forager workers. We examined the relationship between these atypical queen behaviors and their juvenile hormone binding protein (JHbp) and vitellogenin (Vg) expression via QRT-PCR method. JHbp and Vg expression decreased when queens were performing worker tasks, resembling the expected expression pattern of typical sterile workers. Flexibility in queen behaviors in the little fire ant may be an important adaptation to changing environments. As a significant invasive species, such adaptation may increase the probability of colony survival during propagation. Our results not only present new insights in behavioral flexibility in social insects, but also increases our understanding of the success of this significant invasive species.
Honey bees, as many species of social insects, display a division of labor among colony members based on behavioral specializations related to age. Adult worker honey bees perform a series of tasks in the hive when they are young (such as brood care or nursing) and at ca. 2–3 wk of age, shift to foraging for nectar and pollen outside the hive. The transition to foraging involves changes in metabolism and neuroendocrine activities. These changes are associated with a suite of developmental genes. It was recently demonstrated that antibiotics influence behavioral development by accelerating or delaying the onset of foraging depending on timing of antibiotic exposure. To understand the mechanisms of these changes, we conducted a study on the effects of antibiotics on expression of candidate genes known to regulate behavioral development. We demonstrate a delay in the typical changes in gene expression over the lifetime of the individuals that were exposed to antibiotics during immature stage and adulthood. Additionally, we show an acceleration in the typical changes in gene expression on individuals that were expose to antibiotics only during immature stage. These results show that timing of antibiotic exposure alter the typical regulation of behavioral development by metabolic and neuroendocrine processes.
Worker division of labor is a defining trait in social insects. Many species are characterized by having behavioral flexibility where workers perform non-typical tasks for their age depending on the colony’s needs. Worker division of labor and behavioral flexibility were examined in the little fire ant Wasmannia auropunctata (Roger, 1863), for which age-related division of labor has been found. Young workers perform nursing duties which include tending of brood and queens, and colony defense, while older workers forage. When nurses were experimentally removed from the colony, foragers were observed carrying out nursing and colony defense duties, yet when foragers were removed nurses did not forage precociously. We also administered juvenile hormone analog, methoprene, to workers. When methoprene was applied, foragers increased their nursing and defense activities while nurses became mainly idle. The behavioral flexibility of foragers of the little fire ant may be evidence of an expansion of worker’s repertoires as they age; older workers can perform tasks they have already done in their life while young individuals are not capable of performing tasks ahead of time. This may be an important adaptation associated with the success of this ant as an invasive species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.