Exhaustive attempts are made in recent decades to improve the performance of thermoelectric materials that are utilized for waste heat-to-electricity conversion. Energy filtering of charge carriers is directed toward enhancing the material thermopower. This paper focuses on the theoretical concepts, experimental evidence, and the authors' view of energy filtering in the context of thermoelectric materials. Recent studies suggest that not all materials experience this effect with the same intensity. Although this effect theoretically demonstrates improvement of the thermopower, applying it poses certain constraints, which demands further research. Predicated on data documented in literature, the unusual dependence of the thermopower and conductivity upon charge carrier concentrations can be altered through the energy filtering approach. Upon surmounting the physical constraints discussed in this article, thermoelectric materials research may gain a new direction to enhance the power factor and thermoelectric figure of merit.
Dislocations have been considered to be an efficient source for scattering midfrequency phonons, contributing to the enhancement of thermoelectric performance. The structure of dislocations can be resolved by electron microscopy whereas their chemical composition and decoration state are scarcely known. Here, we correlate transmission Kikuchi diffraction and (scanning) transmission electron microscopy in conjunction with atom probe tomography to investigate the local structure and chemical composition of dislocations in a thermoelectric Ag-doped PbTe compound. Our investigations indicate that Ag atoms segregate to dislocations with a 10-fold excess of Ag compared with its average concentration in the matrix. Yet the Ag concentration along the dislocation line is not constant but fluctuates from ∼0.8 to ∼10 atom % with a period of about 5 nm. Thermal conductivity is evaluated applying laser flash analysis, and is correlated with theoretical calculations based on the Debye-Callaway model, demonstrating that these Ag-decorated dislocations yield stronger phonon scatterings. These findings reduce the knowledge gap regarding the composition of dislocations needed for theoretical calculations of phonon scattering and pave the way for extending the concept of defect engineering to thermoelectric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.