The function of biological macromolecules involves large-scale conformational dynamics spanning multiple time scales, from microseconds to seconds. Such conformational motions, which may involve whole domains or subunits of a protein, play a key role in allosteric regulation. There is an urgent need for experimental methods to probe the fastest of these motions. Single-molecule fluorescence experiments can in principle be used for observing such dynamics, but there is a lack of analysis methods that can extract the maximum amount of information from the data, down to the microsecond time scale. To address this issue, we introduce HMM, a maximum likelihood estimation algorithm for photon-by-photon analysis of single-molecule fluorescence resonance energy transfer (FRET) experiments. HMM is based on analytical estimators for model parameters, derived using the Baum-Welch algorithm. An efficient and effective method for the calculation of these estimators is introduced. HMM is shown to accurately retrieve the reaction times from ∼1 s to ∼10 μs and even faster when applied to simulations of freely diffusing molecules. We further apply this algorithm to single-molecule FRET data collected from Holliday junction molecules and show that at low magnesium concentrations their kinetics are as fast as ∼10 s. The new algorithm is particularly suitable for experiments on freely diffusing individual molecules and is readily incorporated into existing analysis packages. It paves the way for the broad application of single-molecule fluorescence to study ultrafast functional dynamics of biomolecules.
Here we provide high resolution study of DNA hairpin dynamics achieved by probability distribution analysis (PDA) of diffusion-based single-molecule Förster resonance energy transfer (sm-FRET) histograms. The opening and closing rates of three hairpins both free and attached to DNA origami were determined. The agreement with rates previously obtained using the total internal reflection (TIRF) technique and between free hairpins and hairpins attached to origami validated the PDA and demonstrated that the origami had no influence on the hairpin dynamics. From comparison of rates of four DNA hairpins, differing only in stem sequence, and from comparison with rates calculated using nearest-neighbor method and standard transition state theory, we conclude that the unfolding reaction resembles that of melting of DNA duplex with a corresponding sequence and that the folding reaction depends on counterion concentration and not on stem sequence. Our validation and demonstration of the PDA method will encourage its implementation in future high-resolution dynamic studies of freely diffusing biomolecules.
Realization of bioinspired molecular machines that can perform many and diverse operations in response to external chemical commands is a major goal in nanotechnology, but current molecular machines respond to only a few sequential commands. Lack of effective methods for introduction and removal of command compounds and low efficiencies of the reactions involved are major reasons for the limited performance. We introduce here a user interface based on a microfluidics device and single-molecule fluorescence spectroscopy that allows efficient introduction and removal of chemical commands and enables detailed study of the reaction mechanisms involved in the operation of synthetic molecular machines. The microfluidics provided 64 consecutive DNA strand commands to a DNA-based motor system immobilized inside the microfluidics, driving a bipedal walker to perform 32 steps on a DNA origami track. The microfluidics enabled removal of redundant strands, resulting in a 6-fold increase in processivity relative to an identical motor operated without strand removal and significantly more operations than previously reported for user-controlled DNA nanomachines. In the motor operated without strand removal, redundant strands interfere with motor operation and reduce its performance. The microfluidics also enabled computer control of motor direction and speed. Furthermore, analysis of the reaction kinetics and motor performance in the absence of redundant strands, made possible by the microfluidics, enabled accurate modeling of the walker processivity. This enabled identification of dynamic boundaries and provided an explanation, based on the "trap state" mechanism, for why the motor did not perform an even larger number of steps. This understanding is very important for the development of future motors with significantly improved performance. Our universal interface enables two-way communication between user and molecular machine and, relying on concepts similar to that of solid-phase synthesis, removes limitations on the number of external stimuli. This interface, therefore, is an important step toward realization of reliable, processive, reproducible, and useful externally controlled DNA nanomachines.
In this work, the successful operation of a dynamic DNA device constructed from two DNA origami building blocks is reported. The device includes a bipedal walker that strides back and forth between the two origami tiles. Two different DNA origami tiles are first prepared separately; they are then joined together in a controlled manner by a set of DNA strands to form a stable track in high yield as confirmed by single-molecule fluorescence (SMF). Second, a bipedal DNA motor, initially attached to one of the two origami units and operated by sequential interaction with "fuel" and "antifuel" DNA strands, moves from one origami tile to another and then back again. The operational yield, measured by SMF, was similar to that of a motor operating on a similar track embedded in a single origami tile, confirming that the transfer across the junction from one tile to the other does not result in dissociation that is any more than that of steps on a single tile. These results demonstrate that moving parts can reliably travel from one origami unit to another, and it demonstrates the feasibility of dynamic DNA molecular machines that are made of more than a single origami building block. This study is a step toward the development of motors that can stride over micrometer distances.
We present a detailed coarse-grained computer simulation and single molecule fluorescence study of the walking dynamics and mechanism of a DNA bipedal motor striding on a DNA origami. In particular, we study the dependency of the walking efficiency and stepping kinetics on step size. The simulations accurately capture and explain three different experimental observations. These include a description of the maximum possible step size, a decrease in the walking efficiency over short distances and a dependency of the efficiency on the walking direction with respect to the origami track. The former two observations were not expected and are non-trivial. Based on this study, we suggest three design modifications to improve future DNA walkers. Our study demonstrates the ability of the oxDNA model to resolve the dynamics of complex DNA machines, and its usefulness as an engineering tool for the design of DNA machines that operate in the three spatial dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.