The insights on the primary active oxygen specie and its relation with oxygen vacancy is essential for the design of low-temperature oxidation catalysts. Herein, oxygen vacancy-rich La 0.8 Sr 0.2 CoO 3 with an ordered macroporous structure was integrated on the commercial ceramic monolith in large scale without additional adhesives via a facile in situ solution assembly. The constructed macropores not only contributed to the oxygen vacancy generation in catalyst preparation but also facilitated favorable mass transport during catalytic process. Combined with theoretical investigations and EPR, O 2 -TPD, H 2 -TPR observations, we revealed that monatomic oxygen ions (O − ) are the primary oxygen active specie for perovskite oxide. And molecular O 2 is more favorably adsorbed and activated on surface oxygen vacancies via a one electron transfer process to form monatomic oxygen ions (O − ), thus boosting richness of active O − and the low-temperature oxidation of CO. Different with the preferential Eley−Rideal (E-R) mechanism on pristine LSCO surface, Langmuir−Hinshelwood (L-H) mechanism, in which O − reacts with adsorbed CO to finish the oxidation reaction, was more favorable on the oxygen vacancy rich surface. Our work here elucidates the primary active oxygen specie as well as its origin over perovskite oxides and paves a feasible pathway for rational design of high-performance catalysts in heterogeneous reactions.
High-current density (≥1 A cm–2) is a critical factor for large-scale industrial application of water-splitting electrocatalysts, especially seawater-splitting. However, it still remains a great challenge to reach high-current density due to the lack of active and stable intrinsic catalytic active sites in catalysts. Herein, we report an original three-dimensional self-supporting graphdiyne/molybdenum oxide (GDY/MoO3) material for efficient hydrogen evolution reaction via a rational design of “sp C–O–Mo hybridization” on the interface. The “sp C–O–Mo hybridization” creates new intrinsic catalytic active sites (nonoxygen vacancy sites) and increases the amount of active sites (eight times higher than pure MoO3). The “sp C–O–Mo hybridization” facilitates charge transfer and boosts the dissociation process of H2O molecules, leading to outstanding HER activity with high-current density (>1.2 A cm–2) in alkaline electrolyte and a decent activity and stability in natural seawater. Our results show that high-current density electrocatalysts can be achieved by interfacial chemical bond engineering, three-dimensional structure design, and hydrophilicity optimization.
Activation of O2 is a crucial step in oxidation processes. Here, the concept of sp-hybridized CC triple bonds as an electron donor is adopted to develop highly active and stable catalysts for molecular oxygen activation. We demonstrate that the neighboring sp-hybridized C and Cu sites on the interface of the sub-nanocluster CuO/graphdiyne are the key structures to effectively modulate the O2 activation process in the bridging adsorption mode. The as-prepared sub-nanocluster CuO/graphdiyne catalyst exhibited the highest CO oxidation activity and readily converted 50% CO at around 133 °C, which is 34 and 94 °C lower than that for CuO/graphene and CuO/active carbon catalysts, respectively. In situ diffused reflectance infrared Fourier transform spectroscopy and density functional theory calculation results proved that the neighboring sp-hybridized C is more favorable to promote the rapid dissociation of carbonate than sp2-hybridized C without overcoming any energy barrier. The gaseous CO directly reacts with the active molecular oxygen and tends to proceed through the E–R mechanism with a relatively low energy barrier (0.20 eV). This work revealed that sp-hybridized C of graphdiyne-based materials could effectively improve the O2 activation efficiency, which could facilitate the low-temperature oxidation processes.
Revealing the role of engineered surface oxygen vacancies in the catalytic degradation of volatile organic compounds (VOCs) is of importance for the development of highly efficient catalysts. However, because of various structures of VOC molecules, the role of surface oxygen vacancies in different catalytic reactions remains ambiguous. Herein, a defective Pt/TiO2–x catalyst is proposed to uncover the different catalytic mechanisms of C3H6 and C3H8 combustion via experiments and theoretical calculations. The electron transfer, originated from the oxygen vacancy, facilitates the formation of reduced Pt0 species and simultaneously interfacial chemisorbed O2, thus promoting the C3H6 combustion via efficient CC cleavage. The reduced Pt nanoparticles facilitate the robust chemisorption of bridging dimer O2 2– (Pt–O–O–Ti) species. This chemisorbed oxygen inhibits the C3H8 combustion by depressing C3H8 adsorption. This work offers insights for the rational design of highly efficient catalysts for activating the CC bond in alkene or C–H bond in alkane.
Stabilized Cu+ species have been widely considered as catalytic active sites in composite copper catalysts for catalytic reactions with industrial importance. However, few examples comprehensively explicated the origin of stabilized Cu+ in a low-cost and widely investigated CuO/TiO2 system. In this study, mass producible CuO/TiO2 catalysts with interface-stabilized Cu+ were prepared, which showed excellent low-temperature CO oxidation activity. A thorough characterization and theoretical calculations proved that the strong charge-transfer effect and Ti–O–Cu hybridization in Ti-doped CuO(111) at the CuO/TiO2 interface contributed to the formation and stabilization of Cu+ species. The CO molecule adsorbed on Cu+ and reacted directly with Ti doping-promoted active lattice oxygen via a Mars–van Krevelen mechanism, leading to the enhanced low-temperature activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.