The methodology of complex assessment of the dispersed composition of the granulated product obtained during granulation from liquid systems for various types of humic and mineral solid composites has been offered. A complex assessment of the granulation process efficiency by granulation coefficient and the quality degradation of the granulated product dispersed composition function has been offered.
A mathematical model of continuous granulation process of solid multilayer humic-mineral composites in the fluidized bed unit intended for liquid industrial wastes utilization with obtaining of complex granular fertilizers for environmentally safe agriculture was developed and the stabilization terms of the dispersion composition were defined.
The processes of dehydration and granulation are associated with the heat transfer to the solid particles from the gas coolant, which acts as a fluidizing agent and causes the stochastic movement of the granular material in the apparatus. To implement the layered structure mechanism of granulation of organic-mineral fertilizers it is necessary to ensure intensive circulation of granular material with intensive gradual passage through the appropriate technological zones of the apparatus. The main problem is the low efficiency of interphase exchange in the gas-liquid-solid system and the formation of agglomerates during granulation with the injection of a liquid heterogeneous solution into the bed of solid granular material.
In this work the conditions for increasing the efficiency of the transfer processes when using an inhomogeneous jet-pulsating mode of fluidization were determined.
Analysis of the intensity of renewal of the contact surface of the phases when using inhomogeneous jet-pulsating fluidization in the self-oscillating mode was carried out. It was established that the use of this mode of fluidization allows getting a significant intensification of heat and mass transfer processes due to the activation of diffusion-controlled processes and an increase in the dynamics of interphase contact exchange by 1.9÷2.9 m2/s, which is 27÷41% of the total surface of the material in device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.