Herein we report the development of a photocatalytic strategy for the divergent preparation of functionalized bicyclo[1.1.1]pentylamines. This approach exploits, for the first time, the ability of nitrogen‐radicals to undergo strain‐release reaction with [1.1.1]propellane. This reactivity is facilitated by the electrophilic nature of these open‐shell intermediates and the presence of strong polar effects in the transition‐state for C−N bond formation/ring‐opening. With the aid of a simple reductive quenching photoredox cycle, we have successfully harnessed this novel radical strain‐release amination as part of a multicomponent cascade compatible with several external trapping agents. Overall, this radical strategy enables the rapid construction of novel amino‐functionalized building blocks with potential application in medicinal chemistry programs as p‐substituted aniline bioisosteres.
Visible-light
photoredox catalysis enables the vinylation and allylation
of electrophilic radicals with readily available potassium trifluoroborate
reagents. The processes show good functional group compatibility,
and mechanistic and computational studies have elucidated some of
the aspects associated with the key radical addition step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.