In the present work, the problem of Hiemenz flow through a porous medium of a incompressible non-Newtonian Rivlin-Ericksen fluid with heat transfer is presented and newly developed analytic method, namely the homotopy analysis method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. This flow impinges normal to a plane wall with heat transfer. It has been attempted to show capabilities and wide-range applications of the homotopy analysis method in comparison with the numerical method in solving this problem. Also the convergence of the obtained HAM solution is discussed explicitly. Our reports consist of the effect of the porosity of the medium and the characteristics of the Non-Newtonian fluid on both the flow and heat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.