Background. Kaposi sarcoma (KS)-associated herpesvirus (KSHV) is etiologically linked to all KS forms, but mechanisms underlying KS development are unclear. The incidence of KS in human immunodeficiency virus type 1-infected (HIV-1 + ) individuals implicates immune dysregulation; however, the lack of characterization of KSHV immune responses in endemic KS makes the role of HIV-1 unclear. The study objective was to investigate the HIV-1 and KSHV roles in viral nucleic acid detection, antibody responses, and cytokine responses in polymerase chain reaction-confirmed epidemic KS and endemic KS patients and non-cancer controls from sub-Saharan Africa.Methods. KSHV viral DNA (vDNA), total anti-KSHV antibody, KSHV neutralizing antibody (nAb), and cytokines were quantified.Results. KSHV vDNA was detectable in tumors but variably in plasma and peripheral blood mononuclear cells. Consistent with elevated antibody-associated cytokines (interleukin [IL] 6, IL-5, and IL-10), nAb titers were higher in epidemic KS and endemic KS patients than in controls (P < .05). Despite HIV-1 coinfection in epidemic KS, nAb titers were similar between epidemic KS and endemic KS patients (P = 0.3).Conclusions. Similarities in antibody and cytokine responses between epidemic and endemic KS patients suggest that KSHV drives KS pathogenesis, whereas HIV-1 exacerbates it.
Kaposi’s sarcoma-associated herpes virus (KSHV) is the etiologic agent for Kaposi’s sarcoma (KS). The prognostic utility of KSHV and HIV-1 (human immunodeficiency virus) viremia as well as immunological parameters in clinical management of participants with KS is unclear. The objective of this study was to investigate viral and immunological parameters as predictors of KS treatment responses in participants with KS from sub-Saharan Africa (SSA). Plasma KSHV-DNA, HIV-1 viral load, total anti-KSHV antibody, KSHV-neutralizing antibody (nAb), cytokine/chemokine levels, and T-cell differentiation subsets were quantified before and after KS treatment in 13 participants with KS and in 13 KSHV-infected asymptomatic control individuals. One-way analysis of variance and the Mann-Whitney t-test were used to assess differences between groups where p-values < 0.05 were considered significant. Subjects with patch and plaque KS lesions responded more favorably to treatment than those with nodular lesions. Pre-treatment and post-treatment levels of plasma KSHV-DNA, HIV-1 viral load, KSHV-Ab responses, cytokines, and T-cell populations did not predict the KS treatment response. Elevated KSHV-humoral and cytokine responses persisted in participants with KS despite a clinical KS response. While patch and plaque KS lesions were more common among treatment responders, none of the analyzed viral and immunological parameters distinguished responders from non-responders at baseline or after treatment.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS), one of the most prevalent cancers of people living with HIV/AIDS in sub-Saharan Africa. The seroprevalence for KSHV is high in the region, and no prophylactic vaccine against the virus is available. In this study, we characterized the antigenic targets of KSHV-specific neutralizing antibodies (nAbs) in asymptomatic KSHV-infected individuals and KS patients with high nAbs titers. We quantified the extent to which various KSHV envelope glycoproteins (gB, ORF28, ORF68, gH, gL, gM, gN and gpK8.1) adsorbed/removed KSHV-specific nAbs from the plasma of infected individuals. Our study revealed that plasma from a majority of KSHV neutralizers recognizes multiple viral glycoproteins. Moreover, the breadth of nAbs responses against these viral glycoproteins varies among endemic KS, epidemic KS and asymptomatic KSHV-infected individuals. Importantly, among the KSHV glycoproteins, the gH/gL complex, but neither gH nor gL alone, showed the highest adsorption of KSHV-specific nAbs. This activity was detected in 80% of the KSHV-infected individuals regardless of their KS status. The findings suggest that the gH/gL complex is the predominant antigenic determinant of KSHV-specific nAbs. Therefore, gH/gL is a potential target for development of KSHV prophylactic vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.