Changes and progresses in information technologies have played an important role in the development of intelligent vehicle systems in recent years. Driver fatigue is an important factor in vehicle accidents. For this reason, traffic accidents involving driver fatigue and driver carelessness have been followed by researchers. In this article, a Multi-tasking Convulational Neural Network (ConNN *) model is proposed to detect driver drowsiness/fatigue. Eye and mouth characteristics are utilized for driver's behavior model. Changes to these characteristics are used to monitor driver fatigue. With the proposed Multi-task ConNN model, unlike the studies in the literature, both mouth and eye information are classified into a single model at the same time. Driver fatigue is determined by calculating eyes' closure duration/Percentage of eye closure (PERCLOS) and yawning frequency/frequency of mouth (FOM). In this study, the fatigue degree of the driver is divided into 3 classes. The proposed model achieved 98.81% fatigue detection on YawdDD and NthuDDD dataset. The success of the model is presented comparatively. INDEX TERMS Convolutional neural network, driver fatigue detection, PERCLOS, FOM. * Convulational Neural Network has been abbreviated as ConNN, not CNN or CoNN, CNN has been used as the abbreviation of Celluar Neural Network and CoNN has been used as the abbreviation of Cooperative neural networks in the leterature as a long time. The associate editor coordinating the review of this manuscript and approving it for publication was Zahid Akhtar .
This study presents a nonlinear systems and function learning by using wavelet network. Wavelet networks are as neural network for training and structural approach. But, training algorithms of wavelet networks is required a smaller number of iterations when the compared with neural networks. Gaussianbased mother wavelet function is used as an activation function. Wavelet networks have three main parameters; dilation, translation, and connection parameters (weights). Initial values of these parameters are randomly selected. They are optimized during training (learning) phase. Because of random selection of all initial values, it may not be suitable for process modeling. Because wavelet functions are rapidly vanishing functions. For this reason heuristic procedure has been used. In this study serial-parallel identification model has been applied to system modeling. This structure does not utilize feedback. Real system outputs have been exercised for prediction of the future system outputs. So that stability and approximation of the network is guaranteed. Gradient methods have been applied for parameters updating with momentum term. Quadratic cost function is used for error minimization. Three example problems have been examined in the simulation. They are static nonlinear functions and discrete dynamic nonlinear system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.