<a name="OLE_LINK39"></a><span>The sound at the same decibel (dB) level may be perceived either as annoying noise or as pleasant music. Therefore, it is necessary to go beyond the state-of-the-art approaches that measure only the dB level and also identify the type of the sound especially when the sound is recorded using a microphone. This paper presented a case study that considers the ability of machine learning models to identify sources of environmental noise in urban areas and compares the sound levels with the recommended levels by the World Health Organization (WHO). The approach was evaluated with a </span><a name="OLE_LINK3"></a><span>dataset </span><span>of 44 sound samples grouped in four sound classes that are highway, railway, lawnmowers, and birds. We used mel-frequency cepstral coefficients for feature extraction and supervised algorithms that are Support vector machine (SVM), k-nearest neighbors (KNN), <a name="OLE_LINK22"></a>bootstrap aggregation (Bagging), and random forest (RF) for noise classification. We evaluated performance of the four algorithms to determine the best one for the classification of sound samples in the data set under consideration. The findings showed that the noise classification accuracy is in the range of 95%</span><span>-100%. Furthermore, all the captured data exceeded the recommended levels by WHO which can cause adverse health effects.</span>
Two algorithms Predictor-Corrector [type 2] and Newton's algorithms are developed and applied to evaluate the approximate solution for nonlinear equation of a single diode model. All programs associated with the above algorithms are written in Matlab language. We have been that Predictor-Corrector [type 2] algorithm values are sufficiently accurate besides that going from NRM. Examples of a PV cell design are presented to illustrate this feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.