Background Increasing evidence suggests that vasoactive neuropeptides such as pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38), substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide are involved in the pathophysiology of migraine in adults, but their role in pediatric migraineurs remains unclear. We prospectively investigated plasma levels of these vasoactive neuropeptides in pediatric migraine patients without aura and compared the results with those of age-matched healthy controls. Methods Thirty-eight children aged 6–18 years with migraine without aura and 20 age-matched control subjects were included in the study. Neuropeptides in plasma samples from the controls, and in either the ictal or interictal periods in pediatric migraine without aura, were measured using ELISA. Results PACAP-38 and vasoactive intestinal peptide levels in both ictal and interictal plasma were higher in the patients with pediatric migraine without aura than in the controls ( p < 0.001), although calcitonin gene-related peptide and substance P levels remained unchanged. Otherwise, no significant difference was determined between ictal and interictal periods in terms of all neuropeptide levels. Conclusions This study demonstrates increased plasma PACAP-38 and vasoactive intestinal peptide levels, but not calcitonin gene-related peptide and substance P levels, in pediatric patients with migraine during both attack and attack-free periods. The study findings suggest that PACAP-38 and vasoactive intestinal peptide may be implicated in the pathophysiology of migraine, particularly in pediatric migraineurs.
Growing evidence indicates that the parasympathetic system is implicated in migraine headache. However, the cholinergic mechanisms in the pathophysiology of migraine remain unclear. We investigated the effects and mechanisms of cholinergic modulation and a mast cell stabilizer cromolyn in the nitroglycerin‐induced in vivo migraine model and in vitro hemiskull preparations in rats. Effects of cholinergic agents (acetylcholinesterase inhibitor neostigmine, or acetylcholine, and muscarinic antagonist atropine) and mast cell stabilizer cromolyn or their combinations were tested in the in vivo and in vitro experiments. The mechanical hyperalgesia was assessed by von Frey hairs. Calcitonin gene‐related peptide (CGRP) and C‐fos levels were measured by enzyme‐linked immunosorbent assay. Degranulation and count of meningeal mast cells were determined by toluidine‐blue staining. Neostigmine augmented the nitroglycerin‐induced mechanical hyperalgesia, trigeminal ganglion CGRP levels, brainstem CGRP, and C‐fos levels, as well as degranulation of mast cells in vivo. Atropine inhibited neostigmine‐induced additional increases in CGRP levels in trigeminal ganglion and brainstem while it failed to do this in the mechanical hyperalgesia, C‐fos levels, and the mast cell degranulation. However, all systemic effects of neostigmine were abolished by cromolyn. The cholinergic agents or cromolyn did not alter basal release of CGRP, in vitro, but cromolyn alleviated the CGRP‐inducing effect of capsaicin while atropine failed to do it. These results ensure for a first time direct evidence that endogenous acetylcholine contributes to migraine pathology mainly by activating meningeal mast cells while muscarinic receptors are involved in CGRP release from trigeminal ganglion and brainstem, without excluding the possible role of nicotinic cholinergic receptors.
Background: Epilepsy has neuropsychiatric comorbidities such as depression, bipolar disorder, and anxiety. Drugs that target epilepsy may also be useful for its neuropsychiatric comorbidities. Objective: To investigate the effects of serotonergic modulation on pro-inflammatory cytokines and the seizures in pentylenetetrazole (PTZ)-induced seizure model in rats. Methods: Male Wistar rats were injected intraperitoneally with serotonin, selective serotonin reuptake inhibitor fluoxetine, 5-HT1B/D receptor agonist sumatriptan, or saline 30 min prior to PTZ treatment. Behavioral seizures were assessed by the Racine's scale. Concentrations of IL-1β, IL-6, and TNF-α in serum and brain tissue were determined by ELISA. Results: Serotonin and fluoxetine, but not sumatriptan, alleviated PTZ-induced seizures by prolonging onset times of myoclonic-jerk and generalized tonic-clonic seizures. The anti-seizure effect of fluoxetine was greater than that of serotonin. Likewise, serotonin and fluoxetine, but not sumatriptan, reduced PTZ-induced increases in the levels of IL-1β and IL-6 in both serum and brain tissue. None of the administered drugs including PTZ affected TNF-α concentrations. Conclusions: Our findings suggest that endogenous and exogenous serotonin exhibits anticonvulsant effects by suppressing the neuroinflammation. It seems that 5-HT1B/D receptors do not mediate anticonvulsant and anti-neuroinflammatory effects of serotonin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.