The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which is defined by its positive-sense single-stranded RNA (ssRNA) structure. It is in the order Nidovirales, suborder Coronaviridae, genus Betacoronavirus, and sub-genus Sarbecovirus (lineage B), together with two bat-derived strains with a 96% genomic homology with other bat coronaviruses (BatCoVand RaTG13). Thus far, two Alphacoronavirus strains, HCoV-229E and HCoV-NL63, along with five Betacoronaviruses, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2, have been recognized as human coronaviruses (HCoVs). SARS-CoV-2 has resulted in more than six million deaths worldwide since late 2019. The appearance of this novel virus is defined by its high and variable transmission rate (RT) and coexisting asymptomatic and symptomatic propagation within and across animal populations, which has a longer-lasting impact. Most current therapeutic methods aim to reduce the severity of COVID-19 hospitalization and virus symptoms, preventing the infection from progressing from acute to chronic in vulnerable populations. Now, pharmacological interventions including vaccines and others exist, with research ongoing. The only ethical approach to developing herd immunity is to develop and provide vaccines and therapeutics that can potentially improve on the innate and adaptive system responses at the same time. Therefore, several vaccines have been developed to provide acquired immunity to SARS-CoV-2 induced COVID-19-disease. The initial evaluations of the COVID-19 vaccines began in around 2020, followed by clinical trials carried out during the pandemic with ongoing population adverse effect monitoring by respective regulatory agencies. Therefore, durability and immunity provided by current vaccines requires further characterization with more extensive available data, as is presented in this paper. When utilized globally, these vaccines may create an unidentified pattern of antibody responses or memory B and T cell responses that need to be further researched, some of which can now be compared within laboratory and population studies here. Several COVID-19 vaccine immunogens have been presented in clinical trials to assess their safety and efficacy, inducing cellular antibody production through cellular B and T cell interactions that protect against infection. This response is defined by virus-specific antibodies (anti-N or anti-S antibodies), with B and T cell characterization undergoing extensive research. In this article, we review four types of contemporary COVID-19 vaccines, comparing their antibody profiles and cellular aspects involved in coronavirus immunology across several population studies.
Acinetobacter baumannii is a common cause of healthcare-associated infections (HAI) worldwide, mostly occurring in intensive care units (ICUs). Extended-spectrum beta lactamases (ESBL)-positive A. baumannii strains have emerged as highly resistant to most currently used antimicrobial agents, including carbapenems. The most common mechanism for carbapenem resistance in this species is β-lactamase-mediated resistance. Carbapenem-hydrolyzing class D oxacillinases are widespread among multidrug-resistant (MDR) A. baumannii strains. The present study was conducted to determine the presence and distribution of blaOXA genes among multidrug-resistant A. baumannii isolated from ICU patients and genes encoding insertion sequence (IS-1) in these isolates. Additionally, the plasmid DNA profiles of these isolates were determined. A total of 120 clinical isolates of A. baumannii from various ICU clinical specimens of four main Jordanian hospitals were collected. Bacterial isolate identification was confirmed by biochemical testing and antibiotic sensitivity was then assessed. PCR amplification and automated sequencing were carried out to detect the presence of blaOXA-51, blaOXA-23, blaOXA-24, and blaOXA-58 genes, and ISAba1 insertion sequence. Out of the 120 A. baumannii isolates, 95% of the isolates were resistant to three or more classes of the antibiotics tested and were identified as MDR. The most frequent resistance of the isolates was against piperacillin (96.7%), cephalosporins (97.5%), and β-lactam/β-lactamase inhibitor combinations antibiotics (95.8%). There were 24 (20%) ESBL-producing isolates. A co-existence of blaOXA-51 gene and ISAba1 in all the 24 ESBL-producing isolates was determined. In addition, in the 24 ESBL-producing isolates, 21 (87.5%) carried blaOXA-51 and blaOXA-23 genes, 1 (4.2%) carried blaOXA-51 and blaOXA-24, but all were negative for the blaOXA-58 gene. Plasmid DNA profile A and profile B were the most common (29%) in ESBL-positive MDR A. baumannii isolates while plasmid DNA profile A was the most common in the ESBL-negative isolates. In conclusion, there was an increase in prevalence of MDR-A. baumannii in ICU wards in Jordanian hospitals, especially those having an ESBL phenotype. Thus, identification of ESBL genes is necessary for the surveillance of their transmission in hospitals.
Gastric cancer is one of the most prevalent malignant cancers worldwide and specifically, adenocarcinoma. Based on prior research, there is an association between Helicobacter pylori (H. pylori) infection and the frequency of duodenal ulcer, distal gastric adenocarcinoma, mucosa-associated lymphoid tissue lymphoma, and antral gastritis. H. pylori virulence and toxicity factors have been identified that significantly influence the clinical outcomes of H. pylori infection and gastric adenocarcinoma. However, it is unclear exactly how different strains of H. pylori infection affect gastric adenocarcinoma. Current research suggests this involves tumor suppressor genes, like p27, but also H. Pylori toxic proteins. Therefore, we quantified known H. Pylori genotypes within adenocarcinoma patients to establish the prevalence of known toxins that include cytotoxin-associated gene A (cagA) and vacuolating cytotoxin A (vacA) within patients of variable diagnosis. This analysis used gastrectomy samples which were validated for DNA viability. The incidence of H. Pylori in adenocarcinoma patients in Jordan was established to be 54.5% positive (ureA gene) with cagA genotype occurrence at 57.1% but also vacA gene ratios 24.7%:22.1%: 14.3%:14.3%. (vacAs1:vacAs2: vacAm1:vacAm2). It is statistically significant that p27 was dysregulated and suppressed within nearly all H. Pylori vacA genotypes but also that according to our analysis that 24.6% of H. Pylori samples analyzed had an unknown novel genotype and curiously that p27 protein expression was retained in only 12% of tested adenocarcinoma H. Pylori samples which is suggestive that p27 could be used as a prognostic indicator but also that an un-known yet genotype as yet not characterized could be contributing to the regulation of p27 protein within this cellular environment.
Stomach (gastric) cancer is one of the most prevalent and deadly cancers worldwide and most gastric cancers are adenocarcinomas. Based on prior research, there is an association between Helicobacter pylori (H. pylori) infection together with the frequency of duodenal ulcer, distal gastric adenocarcinoma, mucosa-associated lymphoid tissue (MALT) lymphoma, and antral gastritis. Helicobacter pylori virulence and toxicity factors have been identified before that significantly influence the clinical outcomes of H. pylori infection and gastric adenocarcinoma. However, it remains unclear exactly how different strains of H. pylori affect gastric adenocarcinoma. Current research suggests this involves tumor suppressor genes, like p27 but also H. pylori toxic virulence proteins. Therefore, we quantified known H. pylori genotypes within adenocarcinoma patients to establish the prevalence of known toxins that include cytotoxin-associated gene A (cagA) as well as vacuolating cytotoxin A (vacA) within patients of variable adenocarcinoma diagnosis. This analysis used gastrectomy samples validated for DNA viability. The incidence of H. pylori in adenocarcinoma patients in Jordan was established to be 54.5% positive (ureA gene positive) with cagA genotype occurrence at 57.1%, but also in this population study vacA gene ratios found to be 24.7%:22.1%:14.3%:14.3%. (vacAs1:vacAs2:vacAm1:vacAm2). Using immunohistochemistry (IHC), we confirmed with statistical significance that p27 was dysregulated and suppressed, within nearly all H. pylori vacA genotypes. In addition, within 24.6% of H. pylori samples analyzed was a different bacterial genotype, and curiously that p27 protein expression was retained in 12% of tested adenocarcinoma H. pylori samples. This is suggestive that p27 could be used as a prognostic indicator but also that an unknown genotype could be contributing to the regulatory effects of p27 protein within this bacterial and cellular environment that may include other virulence factors and unknown immune system regulatory changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.