In this report, we perform structure validation of recently reported RNA phosphorothioate (PT) modifications, a new set of epitranscriptome marks found in bacteria and eukaryotes including humans. By comparing synthetic PT‐containing diribonucleotides with native species in RNA hydrolysates by high‐resolution mass spectrometry (MS), metabolic stable isotope labeling, and PT‐specific iodine‐desulfurization, we disprove the existence of PTs in RNA from E. coli, S. cerevisiae, human cell lines, and mouse brain. Furthermore, we discuss how an MS artifact led to the initial misidentification of 2′‐O‐methylated diribonucleotides as RNA phosphorothioates. To aid structure validation of new nucleic acid modifications, we present a detailed guideline for MS analysis of RNA hydrolysates, emphasizing how the chosen RNA hydrolysis protocol can be a decisive factor in discovering and quantifying RNA modifications in biological samples.
RNAs are key players in the cell, and to fulfil their functions, they are enzymatically modified. These modifications have been found to be dynamic and dependent on internal and external factors, such as stress. In this study we used nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS) to address the question of which mechanisms allow the dynamic adaptation of RNA modifications during stress in the model organism S. cerevisiae. We found that both tRNA and rRNA transcription is stalled in yeast exposed to stressors such as H2O2, NaAsO2 or methyl methanesulfonate (MMS). From the absence of new transcripts, we concluded that most RNA modification profile changes observed to date are linked to changes happening on the pre-existing RNAs. We confirmed these changes, and we followed the fate of the pre-existing tRNAs and rRNAs during stress recovery. For MMS, we found previously described damage products in tRNA, and in addition, we found evidence for direct base methylation damage of 2′O-ribose methylated nucleosides in rRNA. While we found no evidence for increased RNA degradation after MMS exposure, we observed rapid loss of all methylation damages in all studied RNAs. With NAIL-MS we further established the modification speed in new tRNA and 18S and 25S rRNA from unstressed S. cerevisiae. During stress exposure, the placement of modifications was delayed overall. Only the tRNA modifications 1-methyladenosine and pseudouridine were incorporated as fast in stressed cells as in control cells. Similarly, 2′-O-methyladenosine in both 18S and 25S rRNA was unaffected by the stressor, but all other rRNA modifications were incorporated after a delay. In summary, we present mechanistic insights into stress-dependent RNA modification profiling in S. cerevisiae tRNA and rRNA.
As essential components of the cellular protein synthesis machineries, tRNAs undergo a tightly controlled biogenesis process, which include the incorporation of a large number of posttranscriptional chemical modifications. Maturation defaults resulting in lack of modifications in the tRNA core may lead to the degradation of hypomodified tRNAs by the rapid tRNA decay (RTD) and nuclear surveillance pathways. Although modifications are typically introduced in tRNAs independently of each other, several modification circuits have been identified in which one or more modifications stimulate or repress the incorporation of others. We previously identified m1A58 as a late modification introduced after more initial modifications, such as Psi55 and T54 in yeast elongator tRNAPhe. However, previous reports suggested that m1A58 is introduced early along the tRNA modification process, with m1A58 being introduced on initial transcripts of initiator tRNAiMet, and hence preventing its degradation by the nuclear surveillance and RTD pathways. Here, aiming to reconcile this apparent inconsistency on the temporality of m1A58 incorporation, we examined the m1A58 modification pathways in yeast elongator and initiator tRNAs. For that, we first implemented a generic approach enabling the preparation of tRNAs containing specific modifications. We then used these specifically modified tRNAs to demonstrate that the incorporation of T54 in tRNAPhe is directly stimulated by Ѱ55, and that the incorporation of m1A58 is directly and individually stimulated by Ѱ55 and T54, thereby reporting on the molecular aspects controlling the Psi 55 to T54 to m1A58 modification circuit in yeast elongator tRNAs. We also show that m1A58 is efficiently introduced on unmodified tRNAiMet, and does not depend on prior modifications. Finally, we show that the m1A58 single modification has tremendous effects on the structural properties of yeast tRNAiMet, with the tRNA elbow structure being properly assembled only when this modification is present. This rationalizes on structural grounds the degradation of hypomodified tRNAiMet lacking m1A58 by the nuclear surveillance and RTD pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.