Glycosylation is one of the most complex post translation modification in eukaryotic cells. Almost 50% of the human proteome is glycosylated as glycosylation plays a vital role in various biological functions such as antigen’s recognition, cell-cell communication, expression of genes and protein folding. It is a significant challenge to identify glycosylation sites in protein sequences as experimental methods are time taking and expensive. A reliable computational method is desirable for the identification of glycosylation sites. In this study, a comprehensive technique for the identification of N-linked glycosylation sites has been proposed using machine learning. The proposed predictor was trained using an up-to-date dataset through back propagation algorithm for multilayer neural network. The results of ten-fold cross-validation and other performance measures such as accuracy, sensitivity, specificity and Mathew’s correlation coefficient inferred that the accuracy of proposed tool is far better than the existing systems such as Glyomine, GlycoEP, Ensemble SVM and GPP.
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.