This roadmap outlines the potential roles of metallic nanoparticles (MNPs) in the field of radiation therapy. MNPs made up of a wide range of materials (from Titanium, Z=22, to Bismuth, Z=83) and a similarly wide spectrum of potential clinical applications, including diagnostic, therapeutic (radiation
BackgroundDose rate variation is a critical factor affecting radionuclide therapy (RNT) efficacy. Relatively few studies to date have investigated the dose rate effect in RNT. Therefore, the aim of this study was to benchmark 90Y RNT (at different dose rates) against external beam radiotherapy (EBRT) in vitro and compare cell kill responses between the two irradiation processes.ResultsThree human colorectal carcinoma (CRC) cell lines (HT29, HCT116, SW48) were exposed to 90Y doses in the ranges 1–10.4 and 6.2–62.3 Gy with initial dose rates of 0.013–0.13 Gy/hr (low dose rate, LDR) and 0.077–0.77 Gy/hr (high dose rate, HDR), respectively. Results were compared to a 6-MV photon beam doses in the range from 1–9 Gy with constant dose rate of 277 Gy/hr. The cell survival parameters from the linear quadratic (LQ) model were determined. Additionally, Monte Carlo simulations were performed to calculate the average dose, dose rate and the number of hits in the cell nucleus.For the HT29 cell line, which was the most radioresistant, the α/β ratio was found to be ≈ 31 for HDR–90Y and ≈ 3.5 for EBRT. LDR–90Y resulting in insignificant cell death compared to HDR–90Y and EBRT. Simulation results also showed for LDR–90Y, for doses ≲ 3 Gy, the average number of hits per cell nucleus is ≲ 2 indicating insufficiently delivered lethal dose. For 90Y doses 3 Gy the number of hits per nucleus decreases rapidly and falls below ≈ 2 after ≈ 5 days of incubation time. Therefore, our results demonstrate that LDR–90Y is radiobiologically less effective than EBRT. However, HDR–90Y at ≈ 56 Gy was found to be radiobiologically as effective as acute ≈ 8 Gy EBRT.ConclusionThese results demonstrate that the efficacy of RNT is dependent on the initial dose rate at which radiation is delivered. Therefore, for a relatively long half-life radionuclide such as 90Y, a higher initial activity is required to achieve an outcome as effective as EBRT.
In cancer radiation therapy, dose enhancement by nanoparticles has to date been investigated only for external beam radiotherapy (EBRT). Here, we report on an in silico study of nanoparticle-enhanced radiation damage in the context of internal radionuclide therapy. We demonstrate the proof-of-principle that clinically relevant radiotherapeutic isotopes (i.e. 213Bi, 223Ra, 90Y, 177Lu, 67Cu, 64Cu and 89Zr) labeled to clinically relevant superparamagnetic iron oxide nanoparticles results in enhanced radiation damage effects localized to sub-micron scales. We find that radiation dose can be enhanced by up to 20%, vastly outperforming nanoparticle dose enhancement in conventional EBRT. Our results demonstrate that in addition to the favorable spectral characteristics of the isotopes and their proximity to the nanoparticles, clustering of the nanoparticles results in a nonlinear collective effect that amplifies nanoscale radiation damage effects by electron-mediated inter-nanoparticle interactions. In this way, optimal radio-enhancement is achieved when the inter-nanoparticle distance is less than the mean range of the secondary electrons. For the radioisotopes studied here, this corresponds to inter-nanoparticle distances <50 nm, with the strongest effects within 20 nm. The results of this study suggest that radiolabeled nanoparticles offer a novel and potentially highly effective platform for developing next-generation theranostic strategies for cancer medicine.
Purpose: Using our chelate-free, heat-induced radiolabeling (HIR) method, we show that a wide range of metals, including those with radioactive isotopologues used for diagnostic imaging and radionuclide therapy, bind to the Feraheme (FH) nanoparticle (NP), a drug approved for the treatment of iron anemia. Material and methods: FH NPs were heated (120°C) with nonradioactive metals, the resulting metal-FH NPs were characterized by inductively coupled plasma mass spectrometry (ICP-MS), dynamic light scattering (DLS), and r 1 and r 2 relaxivities obtained by nuclear magnetic relaxation spectrometry (NMRS). In addition, the HIR method was performed with [ 90 Y]Y 3+ , [ 177 Lu]Lu 3+ , and [ 64 Cu]Cu 2+ , the latter with an HIR technique optimized for this isotope. Optimization included modifying reaction time, temperature, and vortex technique. Radiochemical yield (RCY) and purity (RCP) were measured using size exclusion chromatography (SEC) and thin-layer chromatography (TLC). Results: With ICP-MS, metals incorporated into FH at high efficiency were bismuth, indium, yttrium, lutetium, samarium, terbium and europium (>75% @ 120 o C). Incorporation occurred with a small (less than 20%) but statistically significant increases in size and the r 2 relaxivity. An improved HIR technique (faster heating rate and improved vortexing) was developed specifically for copper and used with the HIR technique and [ 64 Cu] Cu 2+. Using SEC and TLC analyses with [ 90 Y]Y 3+ , [ 177 Lu]Lu 3+ and [ 64 Cu]Cu 2+ , RCYs were greater than 85% and RCPs were greater than 95% in all cases. Conclusion: The chelate-free HIR technique for binding metals to FH NPs has been extended to a range of metals with radioisotopes used in therapeutic and diagnostic applications. Cations with f-orbital electrons, more empty d-orbitals, larger radii, and higher positive charges achieved higher values of RCY and RCP in the HIR reaction. The ability to use a simple heating step to bind a wide range of metals to the FH NP, a widely available approved drug, may allow this NP to become a platform for obtaining radiolabeled nanoparticles in many settings.
Radium-223 dichloride ((223)Ra) is an alpha particle emitter and a natural bone-seeking radionuclide that is currently used for treating osteoblastic bone metastases associated with prostate cancer. The stochastic nature of alpha emission, hits and energy deposition poses some challenges for estimating radiation damage. In this paper we investigate the distribution of hits to cells by multiple alpha particles corresponding to a typical clinically delivered dose using a Monte Carlo model to simulate the stochastic effects. The number of hits and dose deposition were recorded in the cytoplasm and nucleus of each cell. Alpha particle tracks were also visualized. We found that the stochastic variation in dose deposited in cell nuclei ([Formula: see text]40%) can be attributed in part to the variation in LET with pathlength. We also found that [Formula: see text]18% of cell nuclei receive less than one sigma below the average dose per cell ([Formula: see text]15.4 Gy). One possible implication of this is that the efficacy of cell kill in alpha particle therapy need not rely solely on ionization clustering on DNA but possibly also on indirect DNA damage through the production of free radicals and ensuing intracellular signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.