In this paper we consider a class of human activities-atomic activities-which can be represented as a set of measurements over a finite temporal window (e.g., the motion of human body parts during a walking cycle) and which has a relatively small space of variations in performance. A new approach for modeling and recognition of atomic activities that employs principal component analysis and analytical global transformations is proposed. The modeling of sets of exemplar instances of activities that are similar in duration and involve similar body part motions is achieved by parameterizing their representation using principal component analysis. The recognition of variants of modeled activities is achieved by searching the space of admissible parameterized transformations that these activities can undergo. This formulation iteratively refines the recognition of the class to which the observed activity belongs and the transformation parameters that relate it to the model in its class. We provide several experiments on recognition of articulated and deformable human motions from image motion parameters.
In this paper a radial basis function network architecture is developed that learns the correlation of facial feature motion patterns and human expressions. We describe a hierarchical approach which at the highest level identifies expressions, at the mid level determines motion of facial features, and at the low level recovers motion directions. Individual expression networks were trained to recognize the "smile" and "surprise" expressions. Each expression network was trained by viewing a set of sequences of one expression for many subjects. The trained neural network was then tested for retention, extrapolation, and rejection ability. Success rates were 88% for retention, 88% for extrapolation, and 83% for rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.