Responses to the COVID-19 outbreak resulted in one of the largest short-term decreases in anthropogenic emissions in modern history. To date, there has been no comprehensive assessment of the impact of lockdowns on air quality and human health. Using global satellite observations and ground measurements from 36 countries in Europe, North America, and East Asia, we find that lockdowns led to reductions in NO2 concentrations globally, resulting in ~32,000 avoided premature mortalities, including ~21,000 in China. However, we do not find corresponding reductions in PM2.5 and ozone globally. Using satellite measurements, we show that the disconnect between NO2 and ozone changes stems from local chemical regimes. The COVID-related lockdowns demonstrate the need for targeted air quality policies to reduce the global burden of air pollution, especially related to secondary pollutants.
A pressing challenge facing the aviation industry is to aggressively reduce greenhouse gas emissions in the face of increasing demand for aviation fuels. Climate goals such as carbon-neutral growth from 2020 onwards require continuous improvements in technology, operations, infrastructure, and most importantly, reductions in aviation fuel life cycle emissions. The Carbon Offsetting Scheme for International Aviation of the International Civil Aviation Organization provides a global market-based measure to group all possible emissions reduction measures into a joint program. Using a bottom-up, engineering-based modeling approach, this study provides the first estimates of life cycle greenhouse gas emissions from petroleum jet fuel on regional and global scales. Here we show that not all petroleum jet fuels are the same as the country-level life cycle emissions of petroleum jet fuels range from 81.1 to 94.8 gCO2e MJ−1, with a global volume-weighted average of 88.7 gCO2e MJ−1. These findings provide a high-resolution baseline against which sustainable aviation fuel and other emissions reduction opportunities can be prioritized to achieve greater emissions reductions faster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.