International audienceSensing cost and data quality are two primary concerns in mobile crowdsensing. In this article, we propose a new crowdsensing paradigm, sparse mobile crowdsensing, which leverages the spatial and temporal correlation among the data sensed in different sub-areas to significantly reduce the required number of sensing tasks allocated, thus lowering overall sensing cost (e.g., smartphone energy consumption and incentives) while ensuring data quality. Sparse mobile crowdsensing applications intelligently select only a small portion of the target area for sensing while inferring the data of the remaining unsensed area with high accuracy. We discuss the fundamental research challenges in sparse mobile crowdsensing, and design a general framework with potential solutions to the challenges. To verify the effectiveness of the proposed framework, a sparse mobile crowdsensing prototype for temperature and traffic monitoring is implemented and evaluated. With several future research directions identified in sparse mobile crowdsensing, we expect that more research interests will be stimulated in this novel crowdsensing paradig
If it is the author's pre-published version, changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published version.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.