In today's world, transportation infrastructure plays a vital role in global competitiveness and quality of life in societies. The pavement industry deals with tremendous amounts of construction materials. Thus, even a small improvement in the technology can lead to significant environmental benefits and a reduction in the life‐cycle cost of road networks. Asphalt cement is an integral part of road pavement construction, and despite favorable properties at the processing temperature, some challenges need to be addressed to reduce cost and improve performance. This review discusses the nanocellulose modification of asphalt cement for pavement application. Three primary cellulose‐based nanoparticles were studied, including bacterial cellulose, cellulose nanofibers, and cellulose nanocrystals, and their applications in asphalt cement modification. Various research results show significant improvement in pavement's rheological and performance properties with the help of cellulose‐based nanoparticles. However, this review provides the reader with an objective evaluation of the benefits and practical challenges ahead of the industrial‐scale application of nanocellulose in the pavement industry.
Different temperature sensitivity parameters were introduced to address the temperature susceptibility of asphalt cement, all of which used a single number to define each particular material by assuming linearity in temperature sensitivity. The time-temperature superposition principle (TTS) has been used, under different circumstances, to understand the viscoelastic properties of asphalt materials.
Various empirical relationships have been developed to explain the relationship between TTS shift factors and temperature. This research evaluated the suitability of such relationships to evaluate the temperature sensitivity of viscoelastic materials and found that the modified Arrhenius equation is more fundamentally appropriate for this purpose. Results of this study showed that the temperature sensitivity of rheological parameters (TSRP), introduced here, is sensitive to age hardening (for both asphalt cement and mix) and can be used to evaluate age hardening and changes in mix’s volumetric properties as well as investigating the effect of mix design properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.