Exposed to ionizing radiation, nanomaterials often undergo unusual transformations compared to their bulk form. However, atomic-level mechanisms of such transformations are largely unknown. This work visualizes and quantifies nanopore shrinkage in nanoporous alumina subjected to low-energy ion beams in a helium ion microscope. Mass transport in porous alumina is thus simultaneously induced and imaged with nanoscale precision, thereby relating nanoscale interactions to mesoscopic deformations. The interplay between chemical bonds, disorders, and ionization-induced transformations is analyzed. It is found that irradiation-induced diffusion is responsible for mass transport and that the ionization affects mobility of diffusive entities. The extraordinary room temperature superplasticity of the normally brittle alumina is discovered. These findings enable the effective manipulation of chemical bonds and structural order by nanoscale ion-matter interactions to produce mesoscopic structures with nanometer precision, such as ultra-high density arrays of sub-10-nm pores with or without the accompanying controlled plastic deformations.
We have carried out systematic experiments and numerical simulations of the adsorption on porous anodic aluminum oxide (AAO) duplex layers presenting either an ordered or a disordered interconnecting interface between the large (cavity) and small (constriction) sections of the structured pores. Selective blocking of the pore openings resulted in three different pore topologies: open structured pores, funnel pores, and ink-bottle pores. In the case of the structured pores having an ordered interface, the adsorption isotherms present a rich phenomenology characterized by the presence of two steps in the condensation branch and the opening of one (two) hysteresis loops during evaporation for the ink-bottle (open and funnel) pores. The isotherms can be obtained by summing the isotherms measured on uniform pores having the dimensions of the constrictions or of the cavities. The numerical analysis of the three different pore topologies indicates that the shape of the junction between the two pore sections is only important for the adsorption branch. In particular, a conic junction which resembles that of the AAO pores represents the experimental isotherms for the open and funnel pores better, but the shape of the junction in the ink bottle pores does not matter. The isotherms for the duplex layers with a disordered interface display the same general features found for the ordered duplex layers. In both cases, the adsorption branches coincide and have two steps which are shifted to lower relative pressures compared to those for the ordered duplex. Furthermore, the desorption branches comprise hysteresis loops much wider than those of the ordered duplex layers. Overall, this study highlights the important role played by morphologies where there are interconnections between large and small pores.
Recently, graphene nanoribbons (GNRs) on hexagonal boron nitride (h‐BN) substrates have been studied to develop high‐mobility devices or devices based on a 1D Moiré superlattice. For this purpose, a device‐level understanding of the charge‐puddle landscape of a GNR/h‐BN structure is needed when the charge puddles function as scattering sources for mobile charge carriers. Here, a puddle landscape is constructed on the basis of an analysis of the temperature dependencies of the conductance of GNR/h‐BN devices at various gate‐voltage values. For low‐, intermediate‐, and high‐temperature regions near the charge‐neutral point (CNP), the puddle size (50–200 nm), distance between neighboring puddles (40–170 nm), and potential depth of the puddles (in a range of 10 meV) in ∼100 nm wide GNR/h‐BN devices are obtained on the basis of Coulomb blockade, 1D variable‐range hopping, and thermally activated hopping, respectively. Based on the constructed puddle landscape, it is also concluded that the confinement‐gap energy for an ∼100 nm wide GNR is similar to that of the thermal activation energy near the CNP in the GNRs. The constructed puddle landscape for GNR/h‐BN devices is consistent with that obtained from scanning tunneling microscopy observations of graphene on an h‐BN structure.
Adsorption on porous solids depends on the morphology of the pores, the cylindrical one being the most studied in the literature. In this work, we present the first experimental investigation of adsorption and evaporation on conical nanopores produced by anodization of aluminium oxide. The pores are about 50 μm long, with the wide ends having a diameter of ∼79 nm and the narrow ones of ∼30 nm. Three different pores configurations are considered: open at both ends, open only at the narrow end and open only at the wide end. Despite the very small value of the conical angle α, estimated to be ∼0.06°, just barely above α = 0° corresponding to a cylindrical pore, the adsorption isotherms look strikingly different from those measured on cylindrical pores of similar size. First of all, the hysteresis loops of the conical pores with two open ends and with open wide ends practically coincide. Furthermore, they are narrower and the adsorption and evaporation branches are broader than those of the cylindrical pores with similar size. Finally, conical pores with open narrow ends exhibit a large hysteresis indicative of pore blocking. To unravel the mechanisms underlying adsorption and evaporation in such conical pores, we also report complementary results obtained using on-lattice grand canonical Monte Carlo simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.