Parkinson's disease varies widely in clinical manifestations, course of progression and biomarker profiles from person to person. Identification of distinct Parkinson's disease subtypes is of great priority to illuminate underlying pathophysiology, predict progression and develop more efficient personalized care approaches. There is currently no clear way to define and divide subtypes in Parkinson's disease. Using data from the Parkinson's Progression Markers Initiative, we aimed to identify distinct subgroups via cluster analysis of a comprehensive dataset at baseline (i.e. cross-sectionally) consisting of clinical characteristics, neuroimaging, biospecimen and genetic information, then to develop criteria to assign patients to a Parkinson's disease subtype. Four hundred and twenty-one individuals with de novo early Parkinson's disease were included from this prospective longitudinal multicentre cohort. Hierarchical cluster analysis was performed using data on demographic and genetic information, motor symptoms and signs, neuropsychological testing and other non-motor manifestations. The key classifiers in cluster analysis were a motor summary score and three non-motor features (cognitive impairment, rapid eye movement sleep behaviour disorder and dysautonomia). We then defined three distinct subtypes of Parkinson's disease patients: 223 patients were classified as 'mild motor-predominant' (defined as composite motor and all three non-motor scores below the 75th percentile), 52 as 'diffuse malignant' (composite motor score plus either ≥1/3 non-motor score >75th percentile, or all three non-motor scores >75th percentile) and 146 as 'intermediate'. On biomarkers, people with diffuse malignant Parkinson's disease had the lowest level of cerebrospinal fluid amyloid-β (329.0 ± 96.7 pg/ml, P = 0.006) and amyloid-β/total-tau ratio (8.2 ± 3.0, P = 0.032). Data from deformation-based magnetic resonance imaging morphometry demonstrated a Parkinson's disease-specific brain network had more atrophy in the diffuse malignant subtype, with the mild motor-predominant subtype having the least atrophy. Although disease duration at initial visit and follow-up time were similar between subtypes, patients with diffuse malignant Parkinson's disease progressed faster in overall prognosis (global composite outcome), with greater decline in cognition and in dopamine functional neuroimaging after an average of 2.7 years. In conclusion, we introduce new clinical criteria for subtyping Parkinson's disease based on a comprehensive list of clinical manifestations and biomarkers. This clinical subtyping can now be applied to individual patients for use in clinical practice using baseline clinical information. Even though all participants had a recent diagnosis of Parkinson's disease, patients with the diffuse malignant subtype already demonstrated a more profound dopaminergic deficit, increased atrophy in Parkinson's disease brain networks, a more Alzheimer's disease-like cerebrospinal fluid profile and faster progression of motor and cogniti...
We mapped the distribution of atrophy in Parkinson's disease (PD) using magnetic resonance imaging (MRI) and clinical data from 232 PD patients and 117 controls from the Parkinson's Progression Markers Initiative. Deformation-based morphometry and independent component analysis identified PD-specific atrophy in the midbrain, basal ganglia, basal forebrain, medial temporal lobe, and discrete cortical regions. The degree of atrophy reflected clinical measures of disease severity. The spatial pattern of atrophy demonstrated overlap with intrinsic networks present in healthy brain, as derived from functional MRI. Moreover, the degree of atrophy in each brain region reflected its functional and anatomical proximity to a presumed disease epicenter in the substantia nigra, compatible with a trans-neuronal spread of the disease. These results support a network-spread mechanism in PD. Finally, the atrophy pattern in PD was also seen in healthy aging, where it also correlated with the loss of striatal dopaminergic innervation.DOI: http://dx.doi.org/10.7554/eLife.08440.001
Here we test the hypothesis that the neurodegenerative process in Parkinson’s disease (PD) moves stereotypically along neural networks, possibly reflecting the spread of toxic alpha-synuclein molecules. PD patients (n = 105) and matched controls (n = 57) underwent T1-MRI at entry and 1 year later as part of the Parkinson’s Progression Markers Initiative. Over this period, PD patients demonstrate significantly greater cortical thinning than controls in parts of the left occipital and bilateral frontal lobes and right somatomotor-sensory cortex. Cortical thinning is correlated to connectivity (measured functionally or structurally) to a “disease reservoir” evaluated by MRI at baseline. The atrophy pattern in the ventral frontal lobes resembles one described in certain cases of Alzheimer’s disease. Our findings suggest that disease propagation to the cortex in PD follows neuronal connectivity and that disease spread to the cortex may herald the onset of cognitive impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.