This research underlines the potential of alginate multilayered gel microspheres for the layered encapsulation and the simultaneous delivery of vitamin B2 (VB) and β-carotene (BC). Chitosan was used to improve the stability and controlled release ability of alginate-based gel microspheres. It was shown that a clear multilayered structure possessed the characteristics of pH response, and excellent thermal stability. The sodium alginate concentration and the number of layers had notable effects on mechanical properties and particle size of gel microspheres. Fourier-transform infrared spectroscopy and X-ray diffraction analyses further proved that VB and BC were encapsulated within the gel microspheres. Compared with the three-layer VB-loaded gel microspheres, the total release of VB from the three-layer VB and BC-loaded gel decreased from 93.23 to 85.58%. The total release of BC from the three-layer VB and BC-loaded gel increased from 66.11 to 69.24% compared with three-layer BC-loaded gel. The simultaneous encapsulation of VB and BC in multilayered gel microspheres can markedly improve their bioaccessibility and bioavailability. These results showed the multilayer gel microspheres synthesized herein have potential for applications in the layered encapsulation and simultaneous delivery of various bioactive substances to the intestinal tract.
Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) causes major disability as a consequence of recurrent demyelinating events and neuronal loss. Biomarkers identifying different phenotypes of recurrence or tissue damage might be useful to guide individualized therapy. Herein, we evaluated serum neurofilament light chain (sNfL) as a potential biomarker in both adult and pediatric MOGAD patients. Forty-nine patients with MOGAD (37 adults, 12 children) and 71 healthy controls (HCs) (56 adults, 15 children) were enrolled prospectively from September 2019 to April 2021 at the Third Affiliated Hospital of Sun Yat-sen University and the
Neurodegenerative diseases are characterized by progressive loss of neurons manifested as motor dysfunction and/or cognitive decline. Aberrant protein aggregation with altered physicochemical properties occurs in most neurodegenerative diseases. The pathophysiological mechanisms leading to the onset and progress of neurodegenerative diseases are still not fully understood. On the one hand, limited studies investigate neurodegenerative disease from human brain tissues. On the other, a comprehensive and efficient analysis method is needed to detect the signaling pathways evolved in neurodegenerative disease. Proteomics on human brains identifies key diagnostic biomarkers and treatment/therapeutic targets of neurodegenerative disorders. In recent years, several proteomics studies conducted on brain tissues from patients with neurodegenerative diseases have shown that changes in protein abundance or post-translational modification underly the disease pathogenesis. In this review, we summarize the major advances of human brain proteomics in the research on Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis and Huntington’s disease as the most common neurodegenerative diseases. Finally, we proposed some perspective clues for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.