Podocytes are critical components of the filtration barrier and responsible for maintaining healthy kidney function. An assault on podocytes is generally associated with progression of chronic glomerular diseases. Therefore, podocyte pathophysiology is a favorite subject of research for nephrologists. Despite this, podocyte research has lagged behind because of the unavailability of techniques for culturing such specialized cells ex vivo in quantities that are adequate for mechanistic studies. In recent years, this problem was circumvented by the efforts of researchers who successfully developed several in vitro podocyte cell culture model systems that paved the way for incredible discoveries in the field of nephrology. This review embarks us on a journey that provides a comprehensive insight into the groundbreaking breakthroughs and novel technological advances made in the field of podocyte cell culture so far, beginning from its inception, evolution, and progression. Herein, we also describe in detail the pros and cons of different models that are currently being used to culture podocytes. Our extensive and exhaustive deliberation on the status of podocyte cell culture will facilitate the researchers to wisely choose an appropriate model for their own research to avoid potential pitfalls in the future.
<b><i>Background:</i></b> Inflammation is a common feature of many kidney diseases. The implicated inflammatory mediators and their underlying molecular mechanisms however are often not clear. <b><i>Summary:</i></b> suPAR is the soluble form of urokinase-type plasminogen activator receptor (uPAR), associated with inflammation and immune activation. It has evolved into a unique circulating kidney disease factor over the last 10 years. In particular, suPAR has multiple looks due to enzymatic cleavage and alternative transcriptional splicing of the uPAR gene. Most recently, suPAR has emerged as a systemic mediator for COVID-19 infection, associated with lung as well as kidney dysfunction. Like membrane-bound uPAR, suPAR could interact with integrins (e.g., αvβ3 integrin) on podocytes, providing the molecular basis for some glomerular kidney diseases. In addition, there have been numerous studies suggesting that suPAR connects acute kidney injury to chronic kidney disease as a special kidney risk factor. Moreover, the implication of circulating suPAR levels in kidney transplantation and plasmapheresis not only indicates its relevance in monitoring for recurrence but also implies suPAR as a possible therapeutic target. In fact, the therapeutic concept of manipulating suPAR function has been evidenced in several kidney disease experimental models. <b><i>Key Messages:</i></b> The last 10 years of research has established suPAR as a unique inflammatory mediator for kidneys. While open questions remain and deserve additional studies, modulating suPAR function may represent a promising novel therapeutic strategy for kidney disease.
Chronic kidney diseases and acute kidney injury are mechanistically distinct kidney diseases. While chronic kidney diseases are associated with podocyte injury, acute kidney injury affects renal tubular epithelial cells. Despite these differences, a cardinal feature of both acute and chronic kidney diseases is dysregulated actin cytoskeleton. We have shown that pharmacological activation of GTPase dynamin ameliorates podocyte injury in murine models of chronic kidney diseases by promoting actin polymerization. Here we establish dynamin’s role in modulating stiffness and polarity of renal tubular epithelial cells by crosslinking actin filaments into branched networks. Activation of dynamin’s crosslinking capability by a small molecule agonist stabilizes the actomyosin cortex of the apical membrane against injury, which in turn preserves renal function in various murine models of acute kidney injury. Notably, a dynamin agonist simultaneously attenuates podocyte and tubular injury in the genetic murine model of Alport syndrome. Our study provides evidence for the feasibility and highlights the benefits of novel holistic nephron-protective therapies.
Kidneys, one of the vital organs in our body, are responsible for maintaining whole-body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in-depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the sub-regions. Recent developments in labeling, tracing, and imaging techniques enabled us to mark, monitor and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we have summarized different cell types, specific markers that are uniquely associated with those cell types, and their distribution in kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in the cell-type specific markers. Thus, the term "cell marker" might be imprecise and sub-optimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although, the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to the researchers, we acknowledge that the list may not be necessarily exhaustive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.