We propose SmartEscape, a real-time, dynamic, intelligent and user-specific evacuation system with a mobile interface for emergency cases such as fire. Unlike past work, we explore dynamically changing conditions and calculate a personal route for an evacuee by considering his/her individual features. SmartEscape, which is fast, low-cost, low resource-consuming and mobile supported, collects various environmental sensory data and takes evacuees' individual features into account, uses an artificial neural network (ANN) to calculate personal usage risk of each link in the building, eliminates the risky ones, and calculates an optimum escape route under existing circumstances. Then, our system guides the evacuee to the exit through the calculated route with vocal and visual instructions on the smartphone. While the position of the evacuee is detected by RFID (Radio-Frequency Identification) technology, the changing environmental conditions are measured by the various sensors in the building. Our ANN (Artificial Neural Network) predicts dynamically changing risk states of all links according to changing environmental conditions. Results show that SmartEscape, with its 98.1% accuracy for predicting risk levels of links for each individual evacuee in a building, is capable of evacuating a great number of people simultaneously, through the shortest and the safest route.
ABSTRACT:Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR) technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.
ABSTRACT:High rise, complex and huge buildings in the cities are almost like a small city with their tens of floors, hundreds of corridors and rooms and passages. Due to size and complexity of these buildings, people need guidance to find their way to the destination in these buildings. In this study, a mobile application is developed to visualize pedestrian's indoor position as 3D in their smartphone and RFID Technology is used to detect the position of pedestrian. While the pedestrian is walking on his/her way on the route, smartphone will guide the pedestrian by displaying the photos of indoor environment on the route. Along the tour, an RFID (RadioFrequency Identification) device is integrated to the system. The pedestrian will carry the RFID device during his/her tour in the building. The RFID device will send the position data to the server directly in every two seconds periodically. On the other side, the pedestrian will just select the destination point in the mobile application on smartphone and sent the destination point to the server. The shortest path from the pedestrian position to the destination point is found out by the script on the server. This script also sends the environment photo of the first node on the acquired shortest path to the client as an indoor navigation module.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.