The objective of this study is to detect abnormal behaviours of moving objects captured in highway traffic flow footages, classify them by using artificial learning methods, and lastly to predict the future thereof (regression). To this end, the system being the object of the design and application consists of three stages. In the first stage, to detect the moving object in the video, background/foreground segmentation method of Mixture of Gaussian (MOG), and to track the moving object, Kalman Filter-Hungarian algorithm method have been used. In the second stage, by using the coordinates of the object, such details as location, distance in terms of time, and speed of the object are obtained, and by using total pixel count data relating to the shape of the object are obtained. The software based on the specifically elaborated algorithm compares these data with the data in the table of rules set down for the road under surveillance, and generates an attribute table comprising anomalies of the objects in the video. In the last stage, however, the data included in the attribute table have been classified and predictions by the artificial learning method, Extreme Learning Machine (ELM) made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.