Literature of Steel Beams with a thin-walled trapezoidal Corrugated Web (SBCWs) shows that the capacity of SBCWs is affected by both the fatigue cracks initiated along the inclined folds (IFs) and the maximal additional stress located in the middle of the IFs. An experimental investigation on the behaviour of hybrid SBCWs under flexure is presented in this paper. This study focuses on the effect of the welding IF between the web and flanges (IFs welded or non-welded), the horizontal-fold length (200, 260, and 350 mm), and transversal flange stiffeners on the failure mechanism of the SBCW under three line load. Accordingly, six hybrid specimens were fabricated, instrumented, and tested (five SBCW specimens and one specimen with a flat web). The test setup was designed to generate shear and a moment in the testing zone via three-point bending. The results indicated that non-welded IFs specimens with or without flange stiffeners failed owing to web tearing after web and flange local buckling. The failure mode of the specimen with continuous welding between the web and flanges was local flange buckling. Finally, the paper presents a comparison between the experimental results and the European Code to predict the capacity of the flange towards local buckling. It was concluded that the non-welding the IFs affected the inelastic behaviour and the capacity of the SBCWs. In addition, the bending resistance equations presented by EN 1993-1-5 can safely predict the test results of the non-welded inclined fold and yield a high safe variation.
The growth of the construction industry has led to the greater consumption of natural resources, which has a direct or indirect negative impact on the environment. To mitigate this, recycled or waste materials are being used as a partial substitute in the manufacture of concrete. Among these waste materials is cement kiln dust (CKD), which is produced during cement production. This study investigated the potential benefits of replacing part of the cement with CKD in two construction applications, i.e., plain concrete and cement blocks. This reflects positively on cost, energy, and the environment, since putting CKD in a landfill damages agricultural soil and plant respiration. In this study, an experimental program was carried out to study how replacing various percentages of ordinary portland cement (OPC) with CKD affected the compressive strengths, the tensile strengths, and the air contents of concrete and cement blocks. Although the results showed that the compressive and tensile strengths decreased as the amount of CKD increased, the air content of the concrete increased, which showed that 5% CKD was suitable for such applications. The results were used to propose two equations that approximate the concrete and cement block compressive strengths according to the CKD replacement percentage.
It is essential to make openings in structural concrete elements to accommodate mechanical and electrical needs. To study the effect of these openings on the performance of reinforced concrete (RC) elements, a numerical investigation was performed and validated using previous experimental work. The effect of the position and dimension of the opening and the beam length on the response of the beams, loads capacities, and failure modes was studied. The simulated RC beams showed different responses, loads capacities, and failure modes depending on the position and dimension of the opening. The transversal near support opening (TNSH) and longitudinal holes (LH) showed lower effects on the load capacities of the beams than the transversal near center opening (TNCH). The supreme reduction percentages of the load capacity (µu%) for beams with TNCH and TNSH were 37.21% and 30.34%, respectively (opening size = 150 × 150 mm2). In addition, the maximum µu% for beam with LH was 17.82% (opening size = 25% of the beam size). The TNSH with a width of less than 18.18% of the beam shear span (550 mm) had trivial effects on the beam’s load capacities (the maximum µu% = 1.26%). Although the beams with combined LH and TNCH or LH and TNSH showed different failure modes, they experienced nearly the same load reductions. Moreover, the length of the beam (solid or hollow) had a great effect on its failure mode and load capacity. Finally, equations were proposed and validated to calculate the yield load and post-cracking deflection for the concrete beams with a longitudinal opening.
Hybrid beams provide the opportunity to implement characterized steel sections by recruiting materials based on yield strength and the type of applied stress. Previous studies demonstrated that steel beams with a trapezoidal corrugated web (SBCWs) were affected by both fatigue cracks initiated along the inclined fold (IF) and the maximal additional stress located in the middle of the IFs. This paper presents a numerical study of hybrid SBCWs and nonwelded IFs. Numerical simulation is presented using the finite element (FE) method with the aid of the ANSYS software package. Three-dimensional FE models were developed considering the nonlinear properties of materials and geometric imperfection and validated using five hybrid specimens that were fabricated and tested experimentally by the authors. The load-deflection behavior and failure mechanism of the numerical results were in good agreement with the experimental results. The comparison of the FE models and the experimental results shows the good capability of the FE model to be used as a base for the parametric study. The parametric study focused on the effect of web thickness, flange thickness, web height, and flange and web steel grades. Furthermore, parametric studies are conducted to investigate the effects of the number and depth of the stiffeners on the behavior of hybrid SBCWs. We concluded that the flange thickness, web thickness, web height, and steel grades of flanges significantly affect the capacity and failure mode of hybrid SBCWs. We also concluded that the flange stiffeners have a significant effect on the overall behavior, toughness, and load capacity of SBCWs. Finally, a new equation is proposed to anticipate the shear capacity of SBCW nonwelded IFs based on the length of the welded horizontal fold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.