Smoking is a social trend that is prevalent around the world, particularly in places of learning and at some significant events. The World Health Organization defines smoking as the most important preventable cause of disease and the third major cause of death in humans. In order to analyze this matter, this study typically emphasizes analyzing the dynamics of the fractional order quitting smoking model via the Caputo-Fabrizio differential operator. For the numerical solution of the considered model, the Laplace transform with the Adomian decomposition method (LADM) and Homotopy perturbation method (HPM) is applied, and the comparison of both the achieved numerical solutions is presented. Moreover, numerical simulation for the suggested scheme has been presented in various fractional orders with the aid of Matlab and the numerical results are supported by illustrative graphics. The simulation reveals the aptness of the considered model.
<abstract>
<p>Water pollution is a critical global concern that demands ongoing scrutiny and revision of water resource policies at all levels to safeguard a healthy living environment. In this study, we focus on examining the dynamics of a fractional-order model involving three interconnected lakes, utilizing the Caputo differential operator. The aim is to investigate the issue of lake pollution by analyzing a system of linear equations that represent the interconnecting waterways. To numerically solve the model, we employ two methods: The Laplace transform with the Adomian decomposition method (LADM) and the Homotopy perturbation method (HPM). We compare the obtained numerical solutions from both methods and present the results. The study encompasses three variations of the model: the periodic input model, the exponentially decaying input model, and the linear input model. MATLAB is employed to conduct numerical simulations for the proposed scheme, considering various fractional orders. The numerical results are further supported by informative graphical illustrations. Through simulation, we validate the suitability of the proposed model for addressing the issue at hand. The outcomes of this research contribute to the understanding and management of water pollution, aiding policymakers and researchers in formulating effective strategies for maintaining water quality and protecting our environment.</p>
</abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.