Privacy-preserving of medical information (such as medical records and images) is an essential right for patients to ensure security against undesired access parties. This right is typically protected by law through firm regulations set by healthcare authorities. However, sensitive-private data usually requires the application of further security and privacy mechanisms such as encipherment (encryption) techniques. ’Medical images’ is one such example of highly demanding security and privacy standards. This is due to the quality and nature of the information carried among these images, which are usually sensitive-private information with few features and tonal variety. Hence, several state-of-the-art encryption mechanisms for medical images have been proposed and developed; however, only a few were efficient and promising. This paper presents a hybrid crypto-algorithm, MID-Crypt, to secure the medical image communicated between medical laboratories and doctors’ accounts. MID-Crypt is designed to efficiently hide medical image features and provide high-security standards. Specifically, MID-Crypt uses a mix of Elliptic-curve Diffie–Hellman (ECDH) for image masking and Advanced Encryption Standard (AES) with updatable keys for image encryption. Besides, a key management module is used to organize the public and private keys, the patient’s digital signature provides authenticity, and integrity is guaranteed by using the Merkle tree. Also, we evaluated our proposed algorithm in terms of several performance indicators including, peak signal-to-noise ratio (PSNR) analysis, correlation analysis, entropy analysis, histogram analysis, and timing analysis. Consequently, our empirical results revealed the superiority of MID-Crypt scoring the best performance values for PSNR, correlation, entropy, and encryption overhead. Finally, we compared the security measures for the MID-Crypt algorithm with other studies, the comparison revealed the distinguishable security against several common attacks such as side-channel attacks (SCA), differential attacks, man-in-the-middle attacks (MITM), and algebraic attacks.
Due to the increased attacks on different applications, data security has become crucial. Many modes can be used to operate the advanced encryption standard (AES), some of which provide integrity, and some outperform other modes in security and simplicity. In this paper, the chain block cipher (CBC) mode has been modified to provide more security to the encrypted data by making it robust against the bit-flipping attack and adding an integrity approach using the keyedhash function. In addition, using the keyd-hash function increases the number of keys needed in CBC-AES to two keys, and this can make the proposed model more secure against bruteforce attacks and Grover’s quantum search algorithm.
Recently, medical image encryption has gained special attention due to the nature and sensitivity of medical data and the lack of effective image encryption using innovative encryption techniques. Several encryption schemes have been recommended and developed in an attempt to improve medical image encryption. The majority of these studies rely on conventional encryption techniques. However, such improvements have come with increased computational complexity and slower processing for encryption and decryption processes. Alternatively, the engagement of intelligent models such as deep learning along with encryption schemes exhibited more effective outcomes, especially when used with digital images. This paper aims to reduce and change the transferred data between interested parties and overcome the problem of building negative conclusions from encrypted medical images. In order to do so, the target was to transfer from the domain of encrypting an image to encrypting features of an image, which are extracted as float number values. Therefore, we propose a deep learning-based image encryption scheme using the autoencoder (AE) technique and the advanced encryption standard (AES). Specifically, the proposed encryption scheme is supposed to encrypt the digest of the medical image prepared by the encoder from the autoencoder model on the encryption side. On the decryption side, the analogous decoder from the auto-decoder is used after decrypting the carried data. The autoencoder was used to enhance the quality of corrupted medical images with different types of noise. In addition, we investigated the scores of structure similarity (SSIM) and mean square error (MSE) for the proposed model by applying four different types of noise: salt and pepper, speckle, Poisson, and Gaussian. It has been noticed that for all types of noise added, the decoder reduced this noise in the resulting images. Finally, the performance evaluation demonstrated that our proposed system improved the encryption/decryption overhead by 50–75% over other existing models.
Due to the increased attacks on different applications, data security has become crucial. Many modes can be used to operate the advanced encryption standard (AES), some of which provide integrity, and some outperform other modes in security and simplicity. In this paper, the chain block cipher (CBC) mode has been modified to provide more security to the encrypted data by making it robust against the bit-flipping attack and adding an integrity approach using the keyedhash function. In addition, using the keyd-hash function increases the number of keys needed in CBC-AES to two keys, and this can make the proposed model more secure against bruteforce attacks and Grover’s quantum search algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.