Despite a decline in popularity over the last several decades, cigarette smoking remains a leading cause of cardiovascular morbidity and mortality. Yet, the effects of cigarette smoking on vascular structure and function are largely unknown. To evaluate changes in the mechanical properties of the aorta that occur with chronic smoking, we exposed female Apolipoprotein E-deficient mice to mainstream cigarette smoke daily for 24 weeks, with room air as control. By the time of sacrifice, cigarette-exposed mice had lower body mass, but experienced larger systolic/diastolic blood pressure when compared to controls. Smoking was associated with significant wall thickening, reduced axial stretch, and circumferential material softening of the aorta. While this contributed to maintaining intrinsic tissue stiffness at control levels despite larger pressure loads, the structural stiffness became significantly larger. Furthermore, the aorta from cigarette-exposed mice exhibited decreased ability to store elastic energy and augment diastolic blood flow. Histological analysis revealed a region-dependent increase in the cross-sectional area due to smoking. Increased smooth muscle and extracellular matrix content led to medial thickening in the ascending aorta, while collagen deposition increased the thickness of the descending thoracic and abdominal aorta. Atherosclerotic lesions were larger in exposed vessels and featured a necrotic core overlaid by a thinned fibrous cap and macrophage infiltration, consistent with a vulnerable phenotype. Collectively, our data indicate that cigarette smoking decreases the mechanical functionality of the aorta, inflicts morphometric alterations to distinct segments of the aorta, and accelerates the progression of atherosclerosis.
Aortic stiffening is an inevitable manifestation of chronological aging, yet the mechano-molecular programs that orchestrate region- and layer-specific adaptations along the length and through the wall of the aorta are incompletely defined. Here, we show that the decline in passive cyclic distensibility is more pronounced in the ascending thoracic (ATA) compared to distal segments of the aorta and that tissues in both the medial and adventitial compartments of the ATA stiffen during aging. Single-cell RNA sequencing of aged ATA tissues reveals altered cellular senescence, remodeling, and inflammatory responses accompanied by enrichment of T-lymphocytes and rarefaction of vascular smooth muscle cells, compared to young samples. T-lymphocytes accumulate in the adventitia and likely promote fibrosis, while activation of mechanosensitive piezo-1 enhances medial vasoconstriction. These results portray the immuno-mechanical aging of the ATA as a process that culminates in a stiffer conduit permissive to the accrual of multi-gerogenic signals priming to disease development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.