Background: Weeks after SARS-CoV-2 infection or exposure, some children develop a severe, life-threatening illness called Multisystem Inflammatory Syndrome in Children (MIS-C).Gastrointestinal symptoms are common in MIS-C patients and severe hyperinflammatory response ensues with potential for cardiac complications. The cause of MIS-C has not previously been identified.Methods: Here, we analyzed biospecimens from 100 children: 19 children with MIS-C, 26 with acute COVID-19, and 55 controls. Stool was assessed for SARS-CoV-2 by RT-PCR and plasma was assessed for markers of breakdown of mucosal barrier integrity, including zonulin.Ultrasensitive antigen detection was used to probe for SARS-CoV-2 antigenemia in plasma, and immune responses were characterized. As proof of concept, we treated a MIS-C patient with larazotide, a zonulin antagonist, and monitored impact on antigenemia and clinical response. Results:We showed that in MIS-C, prolonged presence of SARS-CoV-2 in the GI tract leads to release of zonulin, a biomarker of intestinal permeability, with subsequent trafficking of SARS-CoV-2 antigens into the bloodstream, leading to hyperinflammation. The MIS-C patient treated with larazotide displayed a coinciding decrease in plasma SARS-CoV-2 Spike antigen levels, inflammatory markers, and a resultant clinical improvement above that achieved with currently available treatments. Conclusion:These mechanistic data of MIS-C pathogenesis provide insight into targets for diagnosing, treating, and preventing MIS-C, which are urgently needed for this increasingly common severe COVID-19-related disease in children.
The diagnosis of post-acute sequelae of COVID-19 (PASC) poses an ongoing medical challenge. To identify biomarkers associated with PASC we analyzed plasma samples collected from PASC and COVID-19 patients to quantify viral antigens and inflammatory markers. We detect SARS-CoV-2 spike predominantly in PASC patients up to 12 months post-diagnosis.
SARS-CoV-2 proteins were measured in longitudinal plasma samples collected from 13 participants who received two doses of mRNA-1273 vaccine. 11 of 13 participants showed detectable levels of SARS-CoV-2 protein as early as day one after first vaccine injection. Clearance of detectable SARS-CoV-2 protein correlated with production of IgG and IgA.
BACKGROUND: Cases of adolescents and young adults developing myocarditis after vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–targeted mRNA vaccines have been reported globally, but the underlying immunoprofiles of these individuals have not been described in detail. METHODS: From January 2021 through February 2022, we prospectively collected blood from 16 patients who were hospitalized at Massachusetts General for Children or Boston Children’s Hospital for myocarditis, presenting with chest pain with elevated cardiac troponin T after SARS-CoV-2 vaccination. We performed extensive antibody profiling, including tests for SARS-CoV-2–specific humoral responses and assessment for autoantibodies or antibodies against the human-relevant virome, SARS-CoV-2–specific T-cell analysis, and cytokine and SARS-CoV-2 antigen profiling. Results were compared with those from 45 healthy, asymptomatic, age-matched vaccinated control subjects. RESULTS: Extensive antibody profiling and T-cell responses in the individuals who developed postvaccine myocarditis were essentially indistinguishable from those of vaccinated control subjects, despite a modest increase in cytokine production. A notable finding was that markedly elevated levels of full-length spike protein (33.9±22.4 pg/mL), unbound by antibodies, were detected in the plasma of individuals with postvaccine myocarditis, whereas no free spike was detected in asymptomatic vaccinated control subjects (unpaired t test; P <0.0001). CONCLUSIONS: Immunoprofiling of vaccinated adolescents and young adults revealed that the mRNA vaccine–induced immune responses did not differ between individuals who developed myocarditis and individuals who did not. However, free spike antigen was detected in the blood of adolescents and young adults who developed post-mRNA vaccine myocarditis, advancing insight into its potential underlying cause.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.