Toxic metals are extensively found in the environment, households, and workplaces and contaminate food and drinking water. The crosstalk between environmental exposure to toxic metals and human diseases has been frequently described. The toxic mechanism of action was classically viewed as the ability to dysregulate the redox status, production of inflammatory mediators and alteration of mitochondrial function. Recently, growing evidence showed that heavy metals might exert their toxicity through microRNAs (miRNA)-short, single-stranded, noncoding molecules that function as positive/negative regulators of gene expression. Aberrant alteration of the endogenous miRNA has been directly implicated in various pathophysiological conditions and signaling pathways, consequently leading to different types of cancer and human diseases. Additionally, the gene-regulatory capacity of miRNAs is particularly valuable in the brain-a complex organ with neurons demonstrating a significant ability to adapt following environmental stimuli. Accordingly, dysregulated miRNAs identified in patients suffering from neurological diseases might serve as biomarkers for the earlier diagnosis and monitoring of disease progression. This review will greatly emphasize the effect of the toxic metals on human miRNA activities and how this contributes to progression of diseases such as cancer and neurodegenerative disorders (NDDs).
The study aims to investigate: (1) the prevalence of cannabis among epileptic patients seen at Mansoura University Hospital, (2) serum levels and gene expression of cytokines in epilepsy patients and the controls. and (3) the possibility that cannabis use affects the cytokine levels in epilepsy patients, triggering its future use in treatment. We recruited 440 epilepsy patients and 200 controls matched for age, gender, and ethnicity. Of the epileptic patients, 37.5% demonstrated lifetime cannabis use with a mean duration of 15 ± 73 years. Serum levels of interleukin IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α), were analyzed and gene expression analysis was conducted only for those cytokines that were different between groups in the serum analysis. The “Epilepsy-only” patients had significantly higher serum and mRNA levels of IL-1α, β, IL-2,6,8, and TNF-α compared to the controls and the “Cannabis+Epilepsy” group (p = 0.0001). IL-10 showed significantly lower levels in the “Epilepsy-only” patients compared to the controls and “Cannabis+Epilepsy” (p = 0.0001). Cannabis use is prevalent among epilepsy patients. Epilepsy is characterized by a pro-inflammatory state supported by high serum and gene expression levels. Cannabis users demonstrated significantly lower levels of inflammatory cytokines compared to epilepsy non-cannabis users which might contribute to its use in the treatment of resistant epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.