The entomopathogenic fungi (EPF), as a biological control agent, can provide an alternative option for high-risk insecticides. Beauveria bassiana is one of the most potential EPF of pest control all over the world. The EPF isolate Y-F_ITS1 was isolated from Egyptian fauna on Beauveria-specific selective medium (BS medium). Molecular screening of the B. bassiana isolate, using PCR amplification with B. bassiana-specific primers and nucleotide sequence analysis of the internal transcribed spacer (ITS) region, confirmed the isolate as B. bassiana (accession no. [MK773644.1]). Efficacy of the isolate Y-F_ITS1 was examined against fourth instar larvae of Galleria mellonella L. as a model insect using concentrations from 104 to 107 spores ml−1 in a contact toxicity assay under laboratory conditions. The pathogenicity experiment showed that all the tested concentrations caused mortalities ranged from 75 to 98.33%, within 5 days posttreatment with cumulative mortalities, reached 100%, before 7 days with typical symptoms of infection and sporulation. Further investigations are needed to prove its efficacy against different economic pests as a credible candidate of integrated pest management (IPM) program.
Background
The invincible effects of the entomopathogenic fungi (EPF) under appropriate circumstances compensate for the flaws of chemical insecticides in the control programs. Beauveria bassiana is one of the most elaborated EPF of pest control all over the world. The potential of using the B. bassiana isolate (Y-F_ITS1) was examined against different larval instars (L2, L3, L4, and L5), pupae, and eggs of the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae), using different concentrations under laboratory conditions.
Results
In bioassay, 2nd instar larvae of S. littoralis were significantly the most susceptible stage to B. bassiana isolate at P ≤ 0.05. It is apparent from the results that the cumulative mortality percentage increased with elapsing time with typical symptoms of infection and sporulation. High efficacies ranging from 85.0 to 99.0% corrected mortality rates were recorded for 2nd instar larvae at the spore concentration (1 × 109 spores ml−1). The mortality percentage reached 90.0% for the 3rd instar larvae treated with the same concentration after 5 days. The least mortality rates results were recorded at the 5th instar larvae. B. bassiana isolate showed an ovicidal effect to the eggs of S. littoralis that reached 100% mortality when treated with 1.0 × 108 and 1.0 × 109 spores ml−1, while the concentration 1 × 107 and 1.0 × 108 caused 65.0 and 87.0%, respectively. Reduction of adult emergence reached (0%) in case of treatment with the highest concentrations (1 × 108 and 1 × 109 spores ml−1). Morphogenetic abnormalities were also recorded.
Conclusion
Results of mortality rates and lethal concentration values resulted from the experiments indicated that the tested Y-F_ITS1 isolate was efficient and can be recommended as a potential biocontrol agent against S. littoralis. Further field evaluations are still needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.