The Myh11-CreERT2 mouse line (Cre+) has gained increasing application due to its high lineage specificity relative to other Cre drivers targeting smooth muscle cells (SMCs). This Cre allele, however, was initially inserted into the Y chromosome (X/YCre+), which excluded its application in female mice. Our group established a Cre+ colony from male ancestors. Surprisingly, genotype screening identified female carriers that stably transmitted the Cre allele to the following generations. Crossbreeding experiments revealed a pattern of X-linked inheritance for the transgene (k>1000), indicating that these female carries acquired the Cre allele through a mechanism of Y to X chromosome translocation. Further characterization demonstrated that in hemizygous X/XCre+ mice Cre activity was restricted to a subset arterial SMCs, with Cre expression in arteries decreased by 50% compared to X/YCre+ mice. This mosaicism, however, diminished in homozygous XCre+/XCre+ mice. In a model of aortic aneurysm induced by a SMC-specific Tgfbr1 deletion, the homozygous XCre+/XCre+ Cre driver unmasked the aortic phenotype that is otherwise subclinical when driven by the hemizygous X/XCre+ Cre line. In conclusion, the Cre allele carried by this female mouse line is located on the X chromosome and subjected to X-inactivation. The homozygous XCre+/XCre+ mice produce uniform Cre activity in arterial SMCs.
Neointimal hyperplasia (NIH) and inward wall remodeling cause arterial restenosis and failure of bypass vein grafts. Previous studies from our group suggest that transforming growth factor (TGF) β promotes these pathologies via regulating cell kinetics at the early stage and matrix metabolism at the late stage. Although these temporal TGF β effects may result from its signaling in different cell groups, the responsible cell type has not been identified. In the current study, we evaluated the effect of smooth muscle cell (SMC)‐specific TGF β signaling through its type I receptor TGFBR1 on NIH and wall remodeling of the injured femoral arteries (FAs). An inducible Cre/loxP system was employed to delete SMC Tgfbr1 (Tgfbr1 iko). Mice not carrying the Cre allele (Tgfbr1 f/f) served as controls. The injured FAs were evaluated on d3, d7, and d28 postoperatively. Tgfbr1 iko attenuated NIH by 92%, but had insignificant influence on arterial caliber when compared with Tgfbr1 f/f controls on d28. This attenuation correlated with greater cellularity and reduced collagen content. Compared with Tgfbr1 f/f FAs, however, Tgfbr1 iko FAs exhibited persistent neointimal cell proliferation and cell apoptosis, with both events at a greater rate on d28. Tgfbr1 iko FAs additionally contained fewer SMCs and more inflammatory infiltrates in the neointima and displayed a thicker adventitia than did Tgfbr1 f/f FAs. More MMP9 proteins were detected in the adventitia of Tgfbr1 iko FAs than in that of Tgfbr1 f/f controls. Our results suggest that disruption of SMC Tgfbr1 inhibits arterial NIH in the short term, but the overall vascular phenotype may not favor long‐term performance of the injured arteries.
Neonatal pneumonia is a serious respiratory infectious disease with a high rate of case fatality in developing countries. Salivary cytokines could serve as interesting noninvasive markers in the diagnosis of neonatal pneumonia. The aim was to assess the diagnostic role of salivary and serum interleukin-6 (IL-6), C-reactive protein/mean platelet volume (CRP/MPV) ratio, and the combination of these markers in the diagnosis of late-onset neonatal pneumonia in full-term neonates. Seventy full-term neonates, 35 with late-onset neonatal pneumonia and 35 controls, were enrolled in this prospective case-control study. Complete blood count (CBC), salivary and serum IL-6, and CRP concentrations were measured for all the study subjects. The sensitivity, specificity, positive predictive value, and negative predictive value of salivary IL-6, serum IL-6, and CRP/MPV ratio for the diagnosis of late-onset neonatal pneumonia were determined. At the cutoff point of >34 pg/ml, salivary IL-6 showed 82.86% sensitivity and 91.43% specificity. CRP/MPV ratio showed a sensitivity of 97.14% and specificity of 85.71% at a cutoff value > 0.88 . The combination of salivary IL-6 and CRP/MPV ratio improved the sensitivity and specificity to 100%. The current study shows for the first time that both salivary IL-6 and CRP/MPV ratio are suitable markers for the diagnosis of late-onset neonatal pneumonia in full-term neonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.