The medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors. Here, we show that the POA is comprised of distinct progenitor pools complementarily marked by the transcription factors Dbx1 and Foxp2. As determined by molecular and electrophysiological criteria this embryonic parcellation predicts postnatal MeA inhibitory neuronal subtype identity. We further find that Dbx1-derived and Foxp2+ cells in the MeA are differentially activated in response to innate behavioral cues in a sex-specific manner. Thus, developmental transcription factor expression is predictive of MeA neuronal identity and sex-specific neuronal responses, providing a potential developmental logic for how innate behaviors could be processed by different MeA neuronal subtypes.DOI: http://dx.doi.org/10.7554/eLife.21012.001
Approximately 20% of colorectal cancer patients with colorectal adenocarcinomas present with metastases at the time of diagnosis, and therapies that specially target these metastases are lacking. We present a novel approach for investigating transcriptomic differences between primary colorectal adenocarcinoma and distant metastases, which may help to identify primary tumors with high risk for future dissemination and to inform the development of metastasis-targeted therapies. To effectively compare the transcriptomes of primary colorectal adenocarcinoma and metastatic lesions at both the gene and pathway levels, we eliminated tissue specificity of the "host" organs where tumors are located and adjusted for confounders such as exposure to chemotherapy and radiation, and identified that metastases were characterized by reduced epithelialmesenchymal transition (EMT) but increased MYC target and DNA-repair pathway activities. FBN2 and MMP3 were the most differentially expressed genes between primary tumors and metastases. The two subtypes of colorectal adenocarcinoma metastases that were identified, EMT inflammatory and proliferative, were distinct from the consensus molecular subtype (CMS) 3, suggesting subtype exclusivity. In summary, this study highlights transcriptomic differences between primary tumors and colorectal adenocarcinoma metastases and delineates pathways that are activated in metastases that could be targeted in colorectal adenocarcinoma patients with metastatic disease. Significance: These findings identify a colorectal adenocarcinoma metastasis-specific gene-expression signature that is free from potentially confounding background signals coming from treatment exposure and the normal host tissue that the metastasis is now situated within.
SUMMARY The hypothalamus integrates information required for the production of a variety of innate behaviors such as feeding, mating, aggression and predator avoidance. Despite an extensive knowledge of hypothalamic function, how embryonic genetic programs specify circuits that regulate these behaviors remains unknown. Here, we find that in the hypothalamus the developmentally regulated homeodomain-containing transcription factor Dbx1 is required for the generation of specific subclasses of neurons within the lateral hypothalamic area/zona incerta (LH) and the arcuate (Arc) nucleus. Consistent with this specific developmental role, Dbx1 hypothalamic-specific conditional-knockout mice display attenuated responses to predator odor and feeding stressors but do not display deficits in other innate behaviors such as mating or conspecific aggression. Thus, activity of a single developmentally regulated gene, Dbx1, is a shared requirement for the specification of hypothalamic nuclei governing a subset of innate behaviors.
About a fifth of individuals with colorectal cancer (CRC) present with disease metastasis at the time of diagnosis. While the role of the tumor microenvironment (TME) in governing CRC progression is undeniable, the role of the TME in either establishing or suppressing the formation of distant metastases of CRC is less well established. Despite advances in immunotherapy, many individuals with metastatic CRC do not respond to standard-of-care therapy. Therefore, understanding the role of the TME in establishing distant metastases is essential for developing new immunological agents. Here, we summarize our current understanding of the TME of CRC metastases, describe differences between the TME of primary tumors and their distant metastases, and discuss advances in the design and combinations of immunotherapeutic agents.
CD8 T cell differentiation is orchestrated by dynamic metabolic changes that direct activation, proliferation, cytotoxic function, and epigenetic changes. We report that the BTB-ZF family transcriptional repressor Zbtb20 negatively regulates CD8 T cell metabolism and memory differentiation in mice. Effector and memory CD8 T cells with conditional Zbtb20 deficiency displayed enhanced mitochondrial and glycolytic metabolism, and memory CD8 T cells had enhanced spare respiratory capacity. Furthermore, Zbtb20-deficient CD8 T cells displayed increased flexibility in the use of mitochondrial fuel sources. Phenotypic and transcriptional skewing toward the memory fate was observed during the CD8 T cell response to Listeria monocytogenes. Memory cells mounted larger secondary responses and conferred better protection following tumor challenge. These data suggest that inactivation of Zbtb20 may offer an approach to enhance metabolic activity and flexibility and improve memory CD8 T cell differentiation, useful attributes for T cells used in adoptive immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.